\[ y'(x)=\frac {y(x) \coth \left (\frac {1}{x}\right ) \left (x^2 y(x) \log \left (\frac {x^2+1}{x}\right )-x \log \left (\frac {x^2+1}{x}\right )-\tanh \left (\frac {1}{x}\right )\right )}{x} \] ✗ Mathematica : cpu = 299.999 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 1.455 (sec), leaf count = 96
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!{\frac {1}{x\tanh \left ( {x}^{-1} \right ) } \left ( -\ln \left ( {\frac {{x}^{2}+1}{x}} \right ) x-\tanh \left ( {x}^{-1} \right ) \right ) }\,{\rm d}x}} \left ( \int \!-{\frac {x}{\tanh \left ( {x}^{-1} \right ) }{{\rm e}^{\int \!{\frac {1}{x\tanh \left ( {x}^{-1} \right ) } \left ( -\ln \left ( {\frac {{x}^{2}+1}{x}} \right ) x-\tanh \left ( {x}^{-1} \right ) \right ) }\,{\rm d}x}}\ln \left ( {\frac {{x}^{2}+1}{x}} \right ) }\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]