2.783   ODE No. 783

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=-\frac {y(x) \coth (x) \left (x^2 y(x) (-\log (2 x))+x \log (2 x)+\tanh (x)\right )}{x} \] Mathematica : cpu = 300.052 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.195 (sec), leaf count = 75

\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!{\frac {-x\ln \left ( x \right ) -x\ln \left ( 2 \right ) -\tanh \left ( x \right ) }{x\tanh \left ( x \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac {x \left ( \ln \left ( 2 \right ) +\ln \left ( x \right ) \right ) }{\tanh \left ( x \right ) }{{\rm e}^{\int \!{\frac {-x\ln \left ( x \right ) -x\ln \left ( 2 \right ) -\tanh \left ( x \right ) }{x\tanh \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]