6.2.23 7.4

6.2.23.1 [740] problem number 1
6.2.23.2 [741] problem number 2
6.2.23.3 [742] problem number 3
6.2.23.4 [743] problem number 4
6.2.23.5 [744] problem number 5
6.2.23.6 [745] problem number 6
6.2.23.7 [746] problem number 7
6.2.23.8 [747] problem number 8
6.2.23.9 [748] problem number 9
6.2.23.10 [749] problem number 10
6.2.23.11 [750] problem number 11
6.2.23.12 [751] problem number 12

6.2.23.1 [740] problem number 1

problem number 740

Added Feb. 1, 2019.

Problem 2.7.4.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( a \arccot ^k(\lambda x)+b \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (lambda*ArcCot[lambda*x]^k + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (y-\int _1^x\left (\lambda \cot ^{-1}(\lambda K[1])^k+b\right )dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+(lambda*arccot(lambda*x)^k+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( -bx+y-\int \!\lambda \, \left ( \pi /2-\arctan \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x \right ) \]

____________________________________________________________________________________

6.2.23.2 [741] problem number 2

problem number 741

Added Feb. 1, 2019.

Problem 2.7.4.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( a \arccot ^k(\lambda y)+b \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (lambda*ArcCot[lambda*y]^k + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\int _1^y\frac {1}{\lambda \cot ^{-1}(\lambda K[1])^k+b}dK[1]-x\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+(lambda*arccot(lambda*y)^k+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( \lambda \, \left ( \pi /2-\arctan \left ( y\lambda \right ) \right ) ^{k}+b \right ) ^{-1}\,{\rm d}y+x \right ) \]

____________________________________________________________________________________

6.2.23.3 [742] problem number 3

problem number 742

Added Feb. 1, 2019.

Problem 2.7.4.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + k \arccot ^n(a x+b y+c) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + k*ArcCot[a*x + b*y + c]^n*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+k*arccot(a*x+b*y+c)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int ^{{\frac {ax+by}{b}}}\! \left ( k \left ( \pi /2-\arctan \left ( b{\it \_a}+c \right ) \right ) ^{n}b+a \right ) ^{-1}{d{\it \_a}}b+x \right ) \]

____________________________________________________________________________________

6.2.23.4 [743] problem number 4

problem number 743

Added Feb. 1, 2019.

Problem 2.7.4.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + k \arccot ^k(\lambda x) \arccot ^n(\mu y) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*ArcCot[lambda*x]^k*ArcCot[lambda*y]^n*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\int _1^y\cot ^{-1}(\lambda K[1])^{-n}dK[1]-\int _1^xa \cot ^{-1}(\lambda K[2])^kdK[2]\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+a*arccot(lambda*x)^k*arccot(lambda*y)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( \pi /2-\arctan \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x+\int \!{\frac { \left ( \pi /2-\arctan \left ( y\lambda \right ) \right ) ^{-n}}{a}}\,{\rm d}y \right ) \]

____________________________________________________________________________________

6.2.23.5 [744] problem number 5

problem number 744

Added Feb. 1, 2019.

Problem 2.7.4.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( y^2+ \lambda (\arccot x)^n y - a^2 +a \lambda (\arccot x)^n \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + lambda*ArcCot[x]^n*y - a^2 + a*lambda*ArcCot[x]^n)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(y^2+lambda*arccot(x)^n*y - a^2 +a*lambda*arccot(x)^n)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( -y-a \right ) \int \!{{\rm e}^{-\int \!- \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\lambda +2\,a\,{\rm d}x}}\,{\rm d}x-{{\rm e}^{-\int \!- \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\lambda +2\,a\,{\rm d}x}}}{y+a}} \right ) \]

____________________________________________________________________________________

6.2.23.6 [745] problem number 6

problem number 745

Added Feb. 1, 2019.

Problem 2.7.4.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( y^2+ \lambda x (\arccot x)^n y + \lambda (\arccot x)^n \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] + (y^2 + lambda*x*ArcCot[x]^n*y + lambda*ArcCot[x]^n)*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\exp \left (-\int _1^x-\lambda \cot ^{-1}(K[5])^n K[5]dK[5]\right )}{x^2 y+x}-\int _1^x\frac {\exp \left (-\int _1^{K[6]}-\lambda \cot ^{-1}(K[5])^n K[5]dK[5]\right )}{K[6]^2}dK[6]\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+(y^2+lambda*x*arccot(x)^n*y +lambda*arccot(x)^n)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{xy+1} \left ( yx\int \!{{\rm e}^{\int \!{\frac { \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x+{{\rm e}^{\int \!{\frac { \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{x}^{2}-2}{x}}\,{\rm d}x}}x+\int \!{{\rm e}^{\int \!{\frac { \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

6.2.23.7 [746] problem number 7

problem number 746

Added Feb. 1, 2019.

Problem 2.7.4.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x - \left ( (k+1) x^k y^2- \lambda (\arccot x)^n (x^{k+1} y -1) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - lambda*ArcCot[x]^n*(x^(k + 1)*y - 1))*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)-((k+1)*x^k*y^2- lambda*arccot(x)^n*(x^(k+1)*y-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{{x}^{k+1}y-1} \left ( -{x}^{k+1}{{\rm e}^{\int \!{\frac {{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\lambda \,x-2\,k-2}{x}}\,{\rm d}x}}+\int \!{\frac {{{\rm e}^{\lambda \,\int \!{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x}}}{{x}^{2}{x}^{k}}}\,{\rm d}x \left ( {x}^{k+1}y-1 \right ) \left ( k+1 \right ) \right ) } \right ) \]

____________________________________________________________________________________

6.2.23.8 [747] problem number 8

problem number 747

Added Feb. 1, 2019.

Problem 2.7.4.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccot x)^n y^2+a y + a b -b^2 \lambda (\arccot x)^n n \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 + a*y + a*b - b^2*lambda*ArcCot[x]^n*n)*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(lambda*arccot(x)^n*y^2+a*y + a*b -b^2*lambda*arccot(x)^n*n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.23.9 [748] problem number 9

problem number 748

Added Feb. 1, 2019.

Problem 2.7.4.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccot x)^n y^2- b \lambda x^m(\arccot x)^n y+ b m x^{m-1} \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 - b*lambda*x^m*ArcCot[x]^n*y + b*m*x^(m - 1))*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(lambda*arccot(x)^n*y^2- b*lambda*x^m*arccot(x)^n*y+ b*m*x^(m-1)  )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.23.10 [749] problem number 10

problem number 749

Added Feb. 1, 2019.

Problem 2.7.4.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccot x)^n y^2+ b m x^{m-1} - \lambda b^2 x^{2 m} (\arccot x^n) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 + b*m*x^(m - 1) - lambda*b^2*x^(2*m)*ArcCot[x]^n)*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( lambda*arccot(x)^n*y^2+ b*m*x^(m-1) - lambda*b^2*x^(2*m)*arccot(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.23.11 [750] problem number 11

problem number 750

Added Feb. 1, 2019.

Problem 2.7.4.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccot x)^n(y-a x^m-b)^2+a m x^{m-1} \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*(y - a*x^m - b)^2 + a*m*x^(m - 1))*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\int _1^x\lambda \cot ^{-1}(K[2])^ndK[2]-\frac {1}{a x^m+b-y}\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+( lambda*arccot(x)^n*(y-a*x^m-b)^2+a*m*x^(m-1) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-1+ \left ( a{x}^{m}+b-y \right ) \int \! \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{\rm d}x}{a{x}^{m}+b-y}} \right ) \]

____________________________________________________________________________________

6.2.23.12 [751] problem number 12

problem number 751

Added Feb. 1, 2019.

Problem 2.7.4.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ x w_x + \left ( \lambda (\arccot x)^n y^2+ k y+ \lambda b^2 x^{2 k} (\arccot x)^n \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = x*D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 + k*y + lambda*b^2*x^(2*k)*ArcCot[x]^n)*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-k}}{\sqrt {b^2}}\right )-\sqrt {b^2} \int _1^x\lambda \cot ^{-1}(K[1])^n K[1]^{k-1}dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  x*diff(w(x,y),x)+( lambda*arccot(x)^n*y^2+ k*y+ lambda*b^2*x^(2*k)*arccot(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\it \_F1} \left ( \lambda \,b\int \! \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}{x}^{k-1}\,{\rm d}x-\arctan \left ( {\frac {{x}^{-k}y}{b}} \right ) \right ) \]

____________________________________________________________________________________