Added Feb. 4, 2019.
Problem 2.8.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( f(x) y+g(x) \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y + g[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y \exp \left (-\int _1^xf(K[1])dK[1]\right )-\int _1^x\exp \left (-\int _1^{K[2]}f(K[1])dK[1]\right ) g(K[2])dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*y+g(x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!g \left ( x \right ) {{\rm e}^{-\int \!f \left ( x \right ) \,{\rm d}x}}\,{\rm d}x+y{{\rm e}^{-\int \!f \left ( x \right ) \,{\rm d}x}} \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y+g(x) y^k \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y + g[x]*y^k)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left ((k-1) \int _1^x\exp \left ((k-1) \int _1^{K[2]}f(K[1])dK[1]\right ) g(K[2])dK[2]+y^{1-k} \exp \left ((k-1) \int _1^xf(K[1])dK[1]\right )\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*y+g(x)*y^k )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \left ( k-1 \right ) \int \!{{\rm e}^{ \left ( k-1 \right ) \int \!f \left ( x \right ) \,{\rm d}x}}g \left ( x \right ) \,{\rm d}x+{y}^{1-k}{{\rm e}^{ \left ( k-1 \right ) \int \!f \left ( x \right ) \,{\rm d}x}} \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2+f(x) y -a^2 -a f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + f[x]*y - a^2 - a*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( y^2+f(x)*y -a^2 -a*f(x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( a-y \right ) \int \!{{\rm e}^{\int \!f \left ( x \right ) \,{\rm d}x+2\,ax}}\,{\rm d}x-{{\rm e}^{\int \!f \left ( x \right ) \,{\rm d}x+2\,ax}}}{a-y}} \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2+x f(x) y + f(x)\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + x*f[x]*y + f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\exp \left (-\int _1^x-f(K[5]) K[5]dK[5]\right )}{x^2 y+x}-\int _1^x\frac {\exp \left (-\int _1^{K[6]}-f(K[5]) K[5]dK[5]\right )}{K[6]^2}dK[6]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( y^2+x*f(x)*y + f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{xy+1} \left ( yx\int \!{{\rm e}^{\int \!{\frac {f \left ( x \right ) {x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x+{{\rm e}^{\int \!{\frac {f \left ( x \right ) {x}^{2}-2}{x}}\,{\rm d}x}}x+\int \!{{\rm e}^{\int \!{\frac {f \left ( x \right ) {x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x \right ) } \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x - \left ( (k+1)x^k y^2-x^{k+1} f(x) y+f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - x^(k + 1)*f[x]*y + f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)-( (k+1)*x^k*y^2-x^(k+1)*f(x)*y+f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{{x}^{k+1}y-1} \left ( -{{\rm e}^{\int \!{\frac {{x}^{k+1}f \left ( x \right ) x-2\,k-2}{x}}\,{\rm d}x}}{x}^{k+1}+\int \!{\frac {{{\rm e}^{\int \!{x}^{k+1}f \left ( x \right ) \,{\rm d}x}}}{{x}^{2}{x}^{k}}}\,{\rm d}x \left ( {x}^{k+1}y-1 \right ) \left ( k+1 \right ) \right ) } \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2+a y-a b- b^2 f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + a*y - a*b - b^2*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*y^2+a*y-a*b- b^2*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( b-y \right ) \int \!{{\rm e}^{ax+2\,b\int \!f \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x-{{\rm e}^{ax+2\,b\int \!f \left ( x \right ) \,{\rm d}x}}}{b-y}} \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f[x] y^2-a x^n f[x] y+a n x^{n-1}\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 - a*x^n*f[x]*y + a*n*x^(n - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2-a*x^n*f(x)*y+a*n*x^(n-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2+a n x^{n-1}-a^2 x^{2 n} f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + a*n*x^(n - 1) - a^2*x^(2*n)*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2+a*n*x^(n-1)-a^2*x^(2*n)*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2+g(x) y-a^2 f(x)-a g(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + g[x]*y - a^2*f[x] - a*g[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*y^2+g(x)* y-a^2*f(x)-a*g(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( a-y \right ) \int \!{{\rm e}^{\int \!g \left ( x \right ) \,{\rm d}x+2\,a\int \!f \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x-{{\rm e}^{\int \!g \left ( x \right ) \,{\rm d}x+2\,a\int \!f \left ( x \right ) \,{\rm d}x}}}{a-y}} \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2+g(x) y+a n x^{n-1} - a x^n g(x)-a^2 x^{2 n} f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + g[x]*y + a*n*x^(n - 1) - a*x^n*g[x] - a^2*x^(2*n)*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2+g(x)*y+a*n*x^(n-1) - a*x^n*g(x)-a^2*x^(2*n)*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2-a x^n g(x) y+a n x^{n-1}+a^2 x^{2 n}(g(x)-f(x))\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 - a*x^n*g*x*y + a*n*x^(n - 1) + a^2*x^(2*n)*(g*x - f*x))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2-a*x^n*g(x)*y+a*n*x^(n-1)+a^2*x^(2*n)*(g(x)-f(x)))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + \left ( f(x) y^2+n y+a x^{2 n} f(x)\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (f[x]*y^2 + n*y + a*x^(2*n)*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-n}}{\sqrt {a}}\right )-\sqrt {a} \int _1^xf(K[1]) K[1]^{n-1}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := x*diff(w(x,y),x)+( f(x)*y^2+n*y+a*x^(2*n)*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \sqrt {a}\int \!{x}^{n-1}f \left ( x \right ) \,{\rm d}x-\arctan \left ( {\frac {{x}^{-n}y}{\sqrt {a}}} \right ) \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.1.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + \left ( x^{2 n} f(x) y^2+(a x^n f(x)-n) y+b f(x)\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (x^(2*n)*f[x]*y^2 + (a*x^n*f[x] - n)*y + b*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\int _1^x\frac {b f(K[5]) \sqrt {\frac {K[5]^{2 n}}{b}}}{K[5]}dK[5]-\frac {2 \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \left (\sqrt {\frac {a^2}{b}}-2 y \sqrt {\frac {x^{2 n}}{b}}\right )}{\sqrt {4 b-a^2}}\right )}{\sqrt {4 b-a^2}}\right )\right \}\right \}\]
Maple ✓
restart; pde := x* diff(w(x,y),x)+( x^(2*n)* f(x)*y^2+(a*x^n*f(x)-n)*y+b*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -2\,{\frac {a}{\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }} \left ( a\arctanh \left ( {\frac { \left ( 2\,y{x}^{n}+a \right ) a}{\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }}} \right ) +1/2\,\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }\int \!{\frac {{x}^{n}f \left ( x \right ) }{x}}\,{\rm d}x \right ) } \right ) \]
____________________________________________________________________________________