6.9.2 2.2

6.9.2.1 [1929] Problem 1
6.9.2.2 [1930] Problem 2
6.9.2.3 [1931] Problem 3
6.9.2.4 [1932] Problem 4
6.9.2.5 [1933] Problem 5
6.9.2.6 [1934] Problem 6
6.9.2.7 [1935] Problem 7

6.9.2.1 [1929] Problem 1

problem number 1929

Added Jan 6, 2020.

Problem Chapter 9.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1x2+a0)wy+(b1x2+b0)wz=(c1x+c0)w+s1x2+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*x^2+a0)*D[w[x,y,z],y]+(b1*x^2+b0)*D[w[x,y,z],z]==(c1*x+c0)*w[x,y,z]+s1*x^2+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)e12x(2c0+c1x)c1(a0xa1x33+y,b0xb1x33+z)+π2e(c0+c1x)22c1Erf(c0+c1x2c1)(c02s1+c12s0+c1s1)c15/2+s1(c0c1x)c12}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*x^2+a__0)*diff(w(x,y,z),y)+ (b__1*x^2+b__0)*diff(w(x,y,z),z)=(c__1*x+c__0)*w(x,y,z)+s__1*x^2+s_0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=e1/2x(c1x+2c0)c19/2(c19/2_F1(1/3a1x3a0x+y,1/3b1x3b0x+z)+1/2πe1/2c02c12c12(c02s1+c12s_0+c1s1)erf(1/22(xc1+c0c1))+(c15/2c0xc17/2)e1/2c1x2c0xs1)

____________________________________________________________________________________

6.9.2.2 [1930] Problem 2

problem number 1930

Added Jan 6, 2020.

Problem Chapter 9.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(b1x2+b0)wy+(c1y2+c0)wz=aw+s1x2+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(b1*x^2+b0)*D[w[x,y,z],y]+(c1*y^2+c0)*D[w[x,y,z],z]==a*w[x,y,z]+s1*x^2+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)a3eaxc1(b0xb1x33+y,13b02c1x3310b0b1c1x5+b0c1x2y114b12c1x7+12b1c1x4yc0xc1xy2+z)a2(s0+s1x2)2as1x2s1a3}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (b__1*x^2+b__0)*diff(w(x,y,z),y)+ (c__1*y^2+c__0)*diff(w(x,y,z),z)=a*w(x,y,z)+s__1*x^2+s_0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1a3(eax_F1(1/3b1x3b0x+y,1/14(b12x6+21b1x4b057b1x3y+14/3b02x214xb0y+14y2)xc1c0x+z)a3+(s1x2s_0)a22s1xa2s1)

____________________________________________________________________________________

6.9.2.3 [1931] Problem 3

problem number 1931

Added Jan 6, 2020.

Problem Chapter 9.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(ay+k1x2+k0)wy+(bz+n1x2+n0)wz=(c1x+c0)w+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a*y+k1*x^2+k0)*D[w[x,y,z],y]+(b*z+n1*x^2+n0)*D[w[x,y,z],z]==(c1*x+c0)*w[x,y,z]+s1*x+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)e12x(2c0+c1x)c1(eax(a3y+a2(k0+k1x2)+2ak1x+2k1)a3,ebx(b3z+b2(n0+n1x2)+2bn1x+2n1)b3)+π2e(c0+c1x)22c1Erf(c0+c1x2c1)(c1s0c0s1)c13/2s1c1}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a*y+k__1*x^2+k__0)*diff(w(x,y,z),y)+ (b*z+n__1*x^2+n__0)*diff(w(x,y,z),z)=(c__1*x+c__0)*w(x,y,z)+s__1*x+s_0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1/2e1/2x(c1x+2c0)c15/2(2_F1((ya3+(k1x2+k0)a2+2k1xa+2k1)eaxa3,(zb3+(n1x2+n0)b2+2n1xb+2n1)ebxb3)c15/2+2πe1/2c02c1c1(c0s1c1s_0)erf(1/22(xc1+c0c1))+2e1/2c1x2c0xc13/2s1)

____________________________________________________________________________________

6.9.2.4 [1932] Problem 4

problem number 1932

Added Jan 6, 2020.

Problem Chapter 9.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a2xy+a1x+a0)wy+(b3yz+b2y2+b1x2+b0)wz=(c3z+c2y+c1x+c0)w+s1xy+s2xz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a2*x*y+a1*x+a0)*D[w[x,y,z],y]+(b3*y*z+b2*y^2+b1*x^2+b0)*D[w[x,y,z],z]==(c3*z+c2*y+c1*x+c0)*w[x,y,z]+s1*x*y+s2*x*z; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

$Aborted

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__2*x*y+a__1*x+a__0)*diff(w(x,y,z),y)+ (b__3*y*z+b__2*y^2+b__1*x^2+b__0)*diff(w(x,y,z),z)=(c__3*z+c__2*y+c__1*x+c__0)*w(x,y,z)+s__1*x*y+s__2*x*z; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

Expression too large to display

____________________________________________________________________________________

6.9.2.5 [1933] Problem 5

problem number 1933

Added Jan 6, 2020.

Problem Chapter 9.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) axwx+bxwy+czwz=kxw+sx2

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x,y,z],x]+b*x*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==k*x*w[x,y,z]+s*x^2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ekxac1(ybxa,zxca)s(a+kx)k2}}

Maple

restart; 
local gamma; 
pde :=  a*x*diff(w(x,y,z),x)+ b*x*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=k*x*w(x,y,z)+s*x^2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1k2(ekxa_F1(aybxa,zxca)k2s(kx+a))

____________________________________________________________________________________

6.9.2.6 [1934] Problem 6

problem number 1934

Added Jan 6, 2020.

Problem Chapter 9.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) axwx+bywy+czwz=kxw+sx2

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x,y,z],x]+b*y*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==k*x*w[x,y,z]+s*x^2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ekxac1(yxba,zxca)s(a+kx)k2}}

Maple

restart; 
local gamma; 
pde :=  a*x*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=k*x*w(x,y,z)+s*x^2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1k2(ekxa_F1(yxba,zxca)k2s(kx+a))

____________________________________________________________________________________

6.9.2.7 [1935] Problem 7

problem number 1935

Added Jan 6, 2020.

Problem Chapter 9.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) ax2wx+by2wy+cz2wz=(kx+s)w+px+q

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x,y,z],x]+b*y^2*D[w[x,y,z],y]+c*z^2*D[w[x,y,z],z]==(k*x+s)*w[x,y,z]+p*x+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)esax(sax)ka(asxka(sax)kac1(bax1y,cax1z)+psGamma(ka,sax)aqGamma(a+ka,sax))as}}

Maple

restart; 
local gamma; 
pde :=  a*x^2*diff(w(x,y,z),x)+ b*y^2*diff(w(x,y,z),y)+ c*z^2*diff(w(x,y,z),z)=(k*x+s)*w(x,y,z)+p*x+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(px+qax2akaesaxdx+_F1(axbyxya,axczxza))esaxxka

____________________________________________________________________________________