#### 6.9.2 2.2

6.9.2.1 [1929] Problem 1
6.9.2.2 [1930] Problem 2
6.9.2.3 [1931] Problem 3
6.9.2.4 [1932] Problem 4
6.9.2.5 [1933] Problem 5
6.9.2.6 [1934] Problem 6
6.9.2.7 [1935] Problem 7

##### 6.9.2.1 [1929] Problem 1

problem number 1929

Problem Chapter 9.2.2.1, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $w_x + (a_1 x^2+a_0) w_y + (b_1 x^2+b_0)w_z = (c_1 x+c_0) w + s_1 x^2+s_0$

Mathematica

ClearAll["Global*"];
pde =  D[w[x,y,z],x]+(a1*x^2+a0)*D[w[x,y,z],y]+(b1*x^2+b0)*D[w[x,y,z],z]==(c1*x+c0)*w[x,y,z]+s1*x^2+s0;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



$\left \{\left \{w(x,y,z)\to e^{\frac {1}{2} x (2 \text {c0}+\text {c1} x)} c_1\left (-\text {a0} x-\frac {\text {a1} x^3}{3}+y,-\text {b0} x-\frac {\text {b1} x^3}{3}+z\right )+\frac {\sqrt {\frac {\pi }{2}} e^{\frac {(\text {c0}+\text {c1} x)^2}{2 \text {c1}}} \text {Erf}\left (\frac {\text {c0}+\text {c1} x}{\sqrt {2} \sqrt {\text {c1}}}\right ) \left (\text {c0}^2 \text {s1}+\text {c1}^2 \text {s0}+\text {c1} \text {s1}\right )}{\text {c1}^{5/2}}+\frac {\text {s1} (\text {c0}-\text {c1} x)}{\text {c1}^2}\right \}\right \}$

Maple

restart;
local gamma;
pde :=  diff(w(x,y,z),x)+ (a__1*x^2+a__0)*diff(w(x,y,z),y)+ (b__1*x^2+b__0)*diff(w(x,y,z),z)=(c__1*x+c__0)*w(x,y,z)+s__1*x^2+s_0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));



$w \left ( x,y,z \right ) ={\frac {{{\rm e}^{1/2\,x \left ( c_{1}\,x+2\,c_{0} \right ) }}}{{c_{1}}^{9/2}} \left ( {c_{1}}^{9/2}{\it \_F1} \left ( -1/3\,a_{1}\,{x}^{3}-a_{0}\,x+y,-1/3\,b_{1}\,{x}^{3}-b_{0}\,x+z \right ) +1/2\,\sqrt {\pi }{{\rm e}^{1/2\,{\frac {{c_{0}}^{2}}{c_{1}}}}}\sqrt {2}{c_{1}}^{2} \left ( {c_{0}}^{2}s_{1}+{c_{1}}^{2}{\it s\_0}+c_{1}\,s_{1} \right ) \erf \left ( 1/2\,\sqrt {2} \left ( x\sqrt {c_{1}}+{\frac {c_{0}}{\sqrt {c_{1}}}} \right ) \right ) + \left ( {c_{1}}^{5/2}c_{0}-x{c_{1}}^{7/2} \right ) {{\rm e}^{-1/2\,c_{1}\,{x}^{2}-c_{0}\,x}}s_{1} \right ) }$

____________________________________________________________________________________

##### 6.9.2.2 [1930] Problem 2

problem number 1930

Problem Chapter 9.2.2.2, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $w_x + (b_1 x^2+b_0) w_y + (c_1 y^2+c_0)w_z = a w + s_1 x^2+s_0$

Mathematica

ClearAll["Global*"];
pde =  D[w[x,y,z],x]+(b1*x^2+b0)*D[w[x,y,z],y]+(c1*y^2+c0)*D[w[x,y,z],z]==a*w[x,y,z]+s1*x^2+s0;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



$\left \{\left \{w(x,y,z)\to \frac {a^3 e^{a x} c_1\left (-\text {b0} x-\frac {\text {b1} x^3}{3}+y,-\frac {1}{3} \text {b0}^2 \text {c1} x^3-\frac {3}{10} \text {b0} \text {b1} \text {c1} x^5+\text {b0} \text {c1} x^2 y-\frac {1}{14} \text {b1}^2 \text {c1} x^7+\frac {1}{2} \text {b1} \text {c1} x^4 y-\text {c0} x-\text {c1} x y^2+z\right )-a^2 \left (\text {s0}+\text {s1} x^2\right )-2 a \text {s1} x-2 \text {s1}}{a^3}\right \}\right \}$

Maple

restart;
local gamma;
pde :=  diff(w(x,y,z),x)+ (b__1*x^2+b__0)*diff(w(x,y,z),y)+ (c__1*y^2+c__0)*diff(w(x,y,z),z)=a*w(x,y,z)+s__1*x^2+s_0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));



$w \left ( x,y,z \right ) ={\frac {1}{{a}^{3}} \left ( {{\rm e}^{ax}}{\it \_F1} \left ( -1/3\,b_{1}\,{x}^{3}-b_{0}\,x+y,-1/14\, \left ( {b_{1}}^{2}{x}^{6}+{\frac {21\,b_{1}\,{x}^{4}b_{0}}{5}}-7\,b_{1}\,{x}^{3}y+14/3\,{b_{0}}^{2}{x}^{2}-14\,xb_{0}\,y+14\,{y}^{2} \right ) xc_{1}-c_{0}\,x+z \right ) {a}^{3}+ \left ( -s_{1}\,{x}^{2}-{\it s\_0} \right ) {a}^{2}-2\,s_{1}\,xa-2\,s_{1} \right ) }$

____________________________________________________________________________________

##### 6.9.2.3 [1931] Problem 3

problem number 1931

Problem Chapter 9.2.2.3, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $w_x + (a y+k_1 x^2+k_0) w_y + (b z+n_1 x^2+n_0)w_z = (c_1 x+c_0) w + s_1 x+s_0$

Mathematica

ClearAll["Global*"];
pde =  D[w[x,y,z],x]+(a*y+k1*x^2+k0)*D[w[x,y,z],y]+(b*z+n1*x^2+n0)*D[w[x,y,z],z]==(c1*x+c0)*w[x,y,z]+s1*x+s0;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



$\left \{\left \{w(x,y,z)\to e^{\frac {1}{2} x (2 \text {c0}+\text {c1} x)} c_1\left (\frac {e^{-a x} \left (a^3 y+a^2 \left (\text {k0}+\text {k1} x^2\right )+2 a \text {k1} x+2 \text {k1}\right )}{a^3},\frac {e^{-b x} \left (b^3 z+b^2 \left (\text {n0}+\text {n1} x^2\right )+2 b \text {n1} x+2 \text {n1}\right )}{b^3}\right )+\frac {\sqrt {\frac {\pi }{2}} e^{\frac {(\text {c0}+\text {c1} x)^2}{2 \text {c1}}} \text {Erf}\left (\frac {\text {c0}+\text {c1} x}{\sqrt {2} \sqrt {\text {c1}}}\right ) (\text {c1} \text {s0}-\text {c0} \text {s1})}{\text {c1}^{3/2}}-\frac {\text {s1}}{\text {c1}}\right \}\right \}$

Maple

restart;
local gamma;
pde :=  diff(w(x,y,z),x)+ (a*y+k__1*x^2+k__0)*diff(w(x,y,z),y)+ (b*z+n__1*x^2+n__0)*diff(w(x,y,z),z)=(c__1*x+c__0)*w(x,y,z)+s__1*x+s_0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));



$w \left ( x,y,z \right ) =-1/2\,{\frac {{{\rm e}^{1/2\,x \left ( c_{1}\,x+2\,c_{0} \right ) }}}{{c_{1}}^{5/2}} \left ( -2\,{\it \_F1} \left ( {\frac { \left ( y{a}^{3}+ \left ( k_{1}\,{x}^{2}+k_{0} \right ) {a}^{2}+2\,k_{1}\,xa+2\,k_{1} \right ) {{\rm e}^{-ax}}}{{a}^{3}}},{\frac { \left ( z{b}^{3}+ \left ( n_{1}\,{x}^{2}+n_{0} \right ) {b}^{2}+2\,n_{1}\,xb+2\,n_{1} \right ) {{\rm e}^{-bx}}}{{b}^{3}}} \right ) {c_{1}}^{5/2}+\sqrt {2}\sqrt {\pi }{{\rm e}^{1/2\,{\frac {{c_{0}}^{2}}{c_{1}}}}}c_{1}\, \left ( c_{0}\,s_{1}-c_{1}\,{\it s\_0} \right ) \erf \left ( 1/2\,\sqrt {2} \left ( x\sqrt {c_{1}}+{\frac {c_{0}}{\sqrt {c_{1}}}} \right ) \right ) +2\,{{\rm e}^{-1/2\,c_{1}\,{x}^{2}-c_{0}\,x}}{c_{1}}^{3/2}s_{1} \right ) }$

____________________________________________________________________________________

##### 6.9.2.4 [1932] Problem 4

problem number 1932

Problem Chapter 9.2.2.4, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $w_x + (a_2 x y+a_1 x+a_0) w_y + (b_3 y z+b_2 y^2+b_1 x^2+b_0)w_z = (c_3 z+c_2 y+c_1 x+c_0) w + s_1 x y+s_2 x z$

Mathematica

ClearAll["Global*"];
pde =  D[w[x,y,z],x]+(a2*x*y+a1*x+a0)*D[w[x,y,z],y]+(b3*y*z+b2*y^2+b1*x^2+b0)*D[w[x,y,z],z]==(c3*z+c2*y+c1*x+c0)*w[x,y,z]+s1*x*y+s2*x*z;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



\$Aborted

Maple

restart;
local gamma;
pde :=  diff(w(x,y,z),x)+ (a__2*x*y+a__1*x+a__0)*diff(w(x,y,z),y)+ (b__3*y*z+b__2*y^2+b__1*x^2+b__0)*diff(w(x,y,z),z)=(c__3*z+c__2*y+c__1*x+c__0)*w(x,y,z)+s__1*x*y+s__2*x*z;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));



$\text {Expression too large to display}$

____________________________________________________________________________________

##### 6.9.2.5 [1933] Problem 5

problem number 1933

Problem Chapter 9.2.2.5, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $a x w_x + b x w_y + c z w_z = k x w + s x^2$

Mathematica

ClearAll["Global*"];
pde =  a*x*D[w[x,y,z],x]+b*x*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==k*x*w[x,y,z]+s*x^2;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



$\left \{\left \{w(x,y,z)\to e^{\frac {k x}{a}} c_1\left (y-\frac {b x}{a},z x^{-\frac {c}{a}}\right )-\frac {s (a+k x)}{k^2}\right \}\right \}$

Maple

restart;
local gamma;
pde :=  a*x*diff(w(x,y,z),x)+ b*x*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=k*x*w(x,y,z)+s*x^2;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));



$w \left ( x,y,z \right ) ={\frac {1}{{k}^{2}} \left ( {{\rm e}^{{\frac {kx}{a}}}}{\it \_F1} \left ( {\frac {ay-bx}{a}},z{x}^{-{\frac {c}{a}}} \right ) {k}^{2}-s \left ( kx+a \right ) \right ) }$

____________________________________________________________________________________

##### 6.9.2.6 [1934] Problem 6

problem number 1934

Problem Chapter 9.2.2.6, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $a x w_x + b y w_y + c z w_z = k x w + s x^2$

Mathematica

ClearAll["Global*"];
pde =  a*x*D[w[x,y,z],x]+b*y*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==k*x*w[x,y,z]+s*x^2;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



$\left \{\left \{w(x,y,z)\to e^{\frac {k x}{a}} c_1\left (y x^{-\frac {b}{a}},z x^{-\frac {c}{a}}\right )-\frac {s (a+k x)}{k^2}\right \}\right \}$

Maple

restart;
local gamma;
pde :=  a*x*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=k*x*w(x,y,z)+s*x^2;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));



$w \left ( x,y,z \right ) ={\frac {1}{{k}^{2}} \left ( {{\rm e}^{{\frac {kx}{a}}}}{\it \_F1} \left ( y{x}^{-{\frac {b}{a}}},z{x}^{-{\frac {c}{a}}} \right ) {k}^{2}-s \left ( kx+a \right ) \right ) }$

____________________________________________________________________________________

##### 6.9.2.7 [1935] Problem 7

problem number 1935

Problem Chapter 9.2.2.7, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y,z)$$ $a x^2 w_x + b y^2 w_y + c z^2 w_z = (k x+s) w + p x+q$

Mathematica

ClearAll["Global*"];
pde =  a*x^2*D[w[x,y,z],x]+b*y^2*D[w[x,y,z],y]+c*z^2*D[w[x,y,z],z]==(k*x+s)*w[x,y,z]+p*x+q;
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];



$\left \{\left \{w(x,y,z)\to \frac {e^{-\frac {s}{a x}} \left (-\frac {s}{a x}\right )^{-\frac {k}{a}} \left (a s x^{\frac {k}{a}} \left (-\frac {s}{a x}\right )^{\frac {k}{a}} c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right )+p s \text {Gamma}\left (\frac {k}{a},-\frac {s}{a x}\right )-a q \text {Gamma}\left (\frac {a+k}{a},-\frac {s}{a x}\right )\right )}{a s}\right \}\right \}$

Maple

restart;
local gamma;
pde :=  a*x^2*diff(w(x,y,z),x)+ b*y^2*diff(w(x,y,z),y)+ c*z^2*diff(w(x,y,z),z)=(k*x+s)*w(x,y,z)+p*x+q;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));

`

$w \left ( x,y,z \right ) = \left ( \int \!{\frac {px+q}{a}{x}^{{\frac {-2\,a-k}{a}}}{{\rm e}^{{\frac {s}{ax}}}}}\,{\rm d}x+{\it \_F1} \left ( {\frac {ax-by}{xya}},{\frac {ax-cz}{xza}} \right ) \right ) {{\rm e}^{-{\frac {s}{ax}}}}{x}^{{\frac {k}{a}}}$

____________________________________________________________________________________