Added Jan 16, 2020.
Problem Chapter 9.2.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(a1*Sqrt[x]+a0)*D[w[x,y,z],y]+(b1*Sqrt[x]+b0)*D[w[x,y,z],z]==c*w[x,y,z]+ s1*Sqrt[x]+s0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a__1*sqrt(x)+a__0)*diff(w(x,y,z),y)+ (b__1*sqrt(x)+b__0)*diff(w(x,y,z),z)=c*w(x,y,z)+ s__1*sqrt(x)+s__0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added Jan 16, 2020.
Problem Chapter 9.2.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(b1*x^2+b0)*D[w[x,y,z],y]+(c1*y^3+c0)*D[w[x,y,z],z]==a*w[x,y,z]+ s1*x^3+s0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (b__1*x^2+b__0)*diff(w(x,y,z),y)+ (c__1*y^3+c__0)*diff(w(x,y,z),z)=a*w(x,y,z)+ s__1*x^3+s__0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added Jan 16, 2020.
Problem Chapter 9.2.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(a*y+k*x^3)*D[w[x,y,z],y]+(b*z+n*x^3)*D[w[x,y,z],z]==c*w[x,y,z]+ s*x^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a*y+k*x^3)*diff(w(x,y,z),y)+ (b*z+n*x^3)*diff(w(x,y,z),z)=c*w(x,y,z)+ s*x^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added Jan 16, 2020.
Problem Chapter 9.2.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(a1*x*y+a2*x^3)*D[w[x,y,z],y]+(b1*y*z+b2*y^3)*D[w[x,y,z],z]==(c1*z+c2*y)*w[x,y,z]+ s1*x^2*y+s2*x*z^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
$Aborted
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a__1*x*y+a__2*x^3)*diff(w(x,y,z),y)+ (b__1*y*z+b__2*y^3)*diff(w(x,y,z),z)=(c__1*z+c__2*y)*w(x,y,z)+ s__1*x^2*y+s__2*x*z^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added Jan 16, 2020.
Problem Chapter 9.2.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x,y,z],x]+b*y^3*D[w[x,y,z],y]+c*z^3*D[w[x,y,z],z]==x*w[x,y,z]+ k*x+s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*y^3*diff(w(x,y,z),y)+ c*z^3*diff(w(x,y,z),z)=x*w(x,y,z)+ k*x+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________