6.9.3 2.3

6.9.3.1 [1936] Problem 1
6.9.3.2 [1937] Problem 2
6.9.3.3 [1938] Problem 3
6.9.3.4 [1939] Problem 4
6.9.3.5 [1940] Problem 5

6.9.3.1 [1936] Problem 1

problem number 1936

Added Jan 16, 2020.

Problem Chapter 9.2.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1x+a0)wy+(b1x+b0)wz=cw+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*Sqrt[x]+a0)*D[w[x,y,z],y]+(b1*Sqrt[x]+b0)*D[w[x,y,z],z]==c*w[x,y,z]+ s1*Sqrt[x]+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxc1(a0x23a1x3/2+y,b0x23b1x3/2+z)+πs1ecxErf(cx)2c3/2s0+s1xc}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*sqrt(x)+a__0)*diff(w(x,y,z),y)+ (b__1*sqrt(x)+b__0)*diff(w(x,y,z),z)=c*w(x,y,z)+ s__1*sqrt(x)+s__0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1/21c((2_F1(2/3x3/2a1a0x+y,2/3x3/2b1b0x+z)ccπ+s1erf(cx))ecx2cπ(s1x+s0))1cπ

____________________________________________________________________________________

6.9.3.2 [1937] Problem 2

problem number 1937

Added Jan 16, 2020.

Problem Chapter 9.2.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(b1x2+b0)wy+(c1y3+c0)wz=aw+s1x3+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(b1*x^2+b0)*D[w[x,y,z],y]+(c1*y^3+c0)*D[w[x,y,z],z]==a*w[x,y,z]+ s1*x^3+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)a4(eax)c1(b0xb1x33+y,14b03c1x4+b02(1960b1c1x6c1x3y)+3280b0c1x2(13b12x684b1x3y+140y2)+3140b13c1x10314b12c1x7y+34b1c1x4y2c0xc1xy3+z)+a3(s0+s1x3)+3a2s1x2+6as1x+6s1a4}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (b__1*x^2+b__0)*diff(w(x,y,z),y)+ (c__1*y^3+c__0)*diff(w(x,y,z),z)=a*w(x,y,z)+ s__1*x^3+s__0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1a4(eax_F1(1/3b1x3b0x+y,3c1x140(b13x9+13/2b12x7b010b12x6y+133b1x5b02942b1x4b0y+(35y2b1+35b033)x3140b02x2y3+70b0xy2140y33)c0x+z)a4+(s1x3s0)a33s1x2a26s1xa6s1)

____________________________________________________________________________________

6.9.3.3 [1938] Problem 3

problem number 1938

Added Jan 16, 2020.

Problem Chapter 9.2.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(ay+kx3)wy+(bz+nx3)wz=cw+sx2

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a*y+k*x^3)*D[w[x,y,z],y]+(b*z+n*x^3)*D[w[x,y,z],z]==c*w[x,y,z]+ s*x^2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxc1(eax(a4y+k(a3x3+3a2x2+6ax+6))a4,ebx(b4z+n(b3x3+3b2x2+6bx+6))b4)s(c2x2+2cx+2)c3}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a*y+k*x^3)*diff(w(x,y,z),y)+ (b*z+n*x^3)*diff(w(x,y,z),z)=c*w(x,y,z)+ s*x^2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1c3(ecx_F1((kx3a3+a4y+3kx2a2+6kxa+6k)eaxa4,(nx3b3+b4z+3x2nb2+6nxb+6n)ebxb4)c3s(x2c2+2cx+2))

____________________________________________________________________________________

6.9.3.4 [1939] Problem 4

problem number 1939

Added Jan 16, 2020.

Problem Chapter 9.2.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1xy+a2x3)wy+(b1yz+b2y3)wz=(c1z+c2y)w+s1x2y+s2xz2

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*x*y+a2*x^3)*D[w[x,y,z],y]+(b1*y*z+b2*y^3)*D[w[x,y,z],z]==(c1*z+c2*y)*w[x,y,z]+ s1*x^2*y+s2*x*z^2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

$Aborted

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*x*y+a__2*x^3)*diff(w(x,y,z),y)+ (b__1*y*z+b__2*y^3)*diff(w(x,y,z),z)=(c__1*z+c__2*y)*w(x,y,z)+ s__1*x^2*y+s__2*x*z^2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

Expression too large to display

____________________________________________________________________________________

6.9.3.5 [1940] Problem 5

problem number 1940

Added Jan 16, 2020.

Problem Chapter 9.2.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) ax3wx+by3wy+cz3wz=xw+kx+s

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*y^3*D[w[x,y,z],y]+c*z^3*D[w[x,y,z],z]==x*w[x,y,z]+ k*x+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ex22ac1(bxa12y2,cxa12z2)+π2sex22aErf(x2a)ak}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*y^3*diff(w(x,y,z),y)+ c*z^3*diff(w(x,y,z),z)=x*w(x,y,z)+ k*x+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1/2(e1/2x2aserf(1/22xa)2+2e1/2x2a_F1(2bxy2+aay2,2cxz2+aaz2)aπ2kaπ)1aπ

____________________________________________________________________________________