6.9.4 2.4

6.9.4.1 [1941] Problem 1
6.9.4.2 [1942] Problem 2
6.9.4.3 [1943] Problem 3
6.9.4.4 [1944] Problem 4
6.9.4.5 [1945] Problem 5
6.9.4.6 [1946] Problem 6
6.9.4.7 [1947] Problem 7
6.9.4.8 [1948] Problem 8
6.9.4.9 [1949] Problem 9
6.9.4.10 [1950] Problem 10
6.9.4.11 [1951] Problem 11
6.9.4.12 [1952] Problem 12
6.9.4.13 [1953] Problem 13
6.9.4.14 [1954] Problem 14

6.9.4.1 [1941] Problem 1

problem number 1941

Added Jan 16, 2020.

Problem Chapter 9.2.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bwy+cwz=kxnw+sxm

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*D[w[x,y,z],z]==k*x^n*w[x,y,z]+ s*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ekxn+1an+a(c1(ybxa,zcxa)sxm+1(kxn+1an+a)m+1n+1Gamma(m+1n+1,kxn+1an+a)a(n+1))}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*diff(w(x,y,z),z)=k*x^n*w(x,y,z)+ s*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1ak(m+2n+3)(m+n+2)(m+1)exn+1k(n+1)a((k(n+1)a)m1n+1s(xn+1k+a(m+n+2))(xn+1k(n+1)a)mn22n+2(k(n+1)a)m+1n+1e1/2xn+1k(n+1)a(n+1)2xn+mWhittakerM(n+m2n+2,m+2n+32n+2,xn+1k(n+1)a)+(e1/2xn+1k(n+1)a(k(n+1)a)m1n+1(k(n+1)a)m+1n+1(xn+1k(n+1)a)mn22n+2xn+ms(n+1)(m+n+2)WhittakerM(m+n+22n+2,m+2n+32n+2,xn+1k(n+1)a)+_F1(aybxa,zacxa)k(m+1)(m+2n+3))a(m+n+2))

____________________________________________________________________________________

6.9.4.2 [1942] Problem 2

problem number 1942

Added Jan 16, 2020.

Problem Chapter 9.2.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bywy+czwz=kxnw+sxm

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*y*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==k*x^n*w[x,y,z]+ s*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ekxn+1an+a(c1(yebxa,zecxa)sxm+1(kxn+1an+a)m+1n+1Gamma(m+1n+1,kxn+1an+a)a(n+1))}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=k*x^n*w(x,y,z)+ s*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1ak(m+2n+3)(m+n+2)(m+1)exn+1k(n+1)a((k(n+1)a)m1n+1s(xn+1k+a(m+n+2))(xn+1k(n+1)a)mn22n+2(k(n+1)a)m+1n+1e1/2xn+1k(n+1)a(n+1)2xn+mWhittakerM(n+m2n+2,m+2n+32n+2,xn+1k(n+1)a)+a(e1/2xn+1k(n+1)a(k(n+1)a)m1n+1(k(n+1)a)m+1n+1(xn+1k(n+1)a)mn22n+2xn+ms(n+1)(m+n+2)WhittakerM(m+n+22n+2,m+2n+32n+2,xn+1k(n+1)a)+_F1(yebxa,zecxa)k(m+1)(m+2n+3))(m+n+2))

____________________________________________________________________________________

6.9.4.3 [1943] Problem 3

problem number 1943

Added Jan 16, 2020.

Problem Chapter 9.2.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+azwy+bywz=cxnw+sxm

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+a*z*D[w[x,y,z],y]+b*y*D[w[x,y,z],z]==c*x^n*w[x,y,z]+ s*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxn+1n+1(c1(eabx(by(e2abx+1)az(e2abx1))2b,eabx(az(e2abx+1)by(e2abx1))2a)sxm+1(cxn+1n+1)m+1n+1Gamma(m+1n+1,cxn+1n+1)n+1)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y)+ b*y*diff(w(x,y,z),z)=c*x^n*w(x,y,z)+ s*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(ysa(az2+(_b2y2)b)(1ab(xabln(aby+a2z2abab)+ln(ab_b+a(az2+(_b2y2)b)abab)))mec1a(az2+(_b2y2)b)(1ab(xabln(aby+a2z2abab)+ln(ab_b+a(az2+(_b2y2)b)abab)))nd_bd_b+_F1(az2by2a,1ab(xab+ln(aby+a2z2abab))))eyca(az2+(_a2y2)b)(1ab(xabln(aby+a2z2abab)+ln(ab_a+a(az2+(_a2y2)b)abab)))nd_a

____________________________________________________________________________________

6.9.4.4 [1944] Problem 4

problem number 1944

Added Jan 16, 2020.

Problem Chapter 9.2.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+axnwy+bxmwz=cxkw+sxr

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+a*x^n*D[w[x,y,z],y]+b*x^m*D[w[x,y,z],z]==c*x^k*w[x,y,z]+ s*x^r; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxk+1k+1(c1(axn+1+ny+yn+1,bxm+1+mz+zm+1)sxr+1(cxk+1k+1)r+1k+1Gamma(r+1k+1,cxk+1k+1)k+1)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*x^n*diff(w(x,y,z),y)+ b*x^m*diff(w(x,y,z),z)=c*x^k*w(x,y,z)+ s*x^r; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1c(2k+r+3)(r+1)(k+r+2)(2(k+r/2+3/2)(r+1)c(k+r+2)_F1(xaxn+y(n+1)n+1,xbxm+z(m+1)m+1)+exk+1c2k+2xk+r(k+1)(xk+1ck+1)kr22k+2s(ck+1)r1k+1((k+1)(xk+1c+k+r+2)WhittakerM(k+r2k+2,2k+r+32k+2,xk+1ck+1)+WhittakerM(k+r+22k+2,2k+r+32k+2,xk+1ck+1)(k+r+2)2)(ck+1)r+1k+1)exk+1ck+1

____________________________________________________________________________________

6.9.4.5 [1945] Problem 5

problem number 1945

Added Jan 16, 2020.

Problem Chapter 9.2.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+bxnwy+cymwz=aw+sxk

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+b*x^n*D[w[x,y,z],y]+c*x^m*D[w[x,y,z],z]==a*w[x,y,z]+ s*x^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)eax(c1(bxn+1+ny+yn+1,cxm+1+mz+zm+1)sxk(ax)kGamma(k+1,ax)a)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ b*x^n*diff(w(x,y,z),y)+ c*x^m*diff(w(x,y,z),z)=a*w(x,y,z)+ s*x^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=eaxa(k+1)(a(k+1)_F1(xbxn+y(n+1)n+1,xcxm+z(m+1)m+1)+sxk(ax)k/2e1/2axWhittakerM(k/2,k/2+1/2,ax))

____________________________________________________________________________________

6.9.4.6 [1946] Problem 6

problem number 1946

Added Jan 16, 2020.

Problem Chapter 9.2.4.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(ay+βxn)wy+(bz+γxm)wz=cxkw+sxr

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a*y+beta*x^n)*D[w[x,y,z],y]+(b*z+gamma*x^m)*D[w[x,y,z],z]==c*x^k*w[x,y,z]+ s*x^r; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxk+1k+1(c1(γbm1Gamma(m+1,bx)+zebx,βan1Gamma(n+1,ax)+yeax)sxr+1(cxk+1k+1)r+1k+1Gamma(r+1k+1,cxk+1k+1)k+1)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a*y+beta*x^n)*diff(w(x,y,z),y)+ (b*z+gamma*x^m)*diff(w(x,y,z),z)=c*x^k*w(x,y,z)+ s*x^r; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1c(2k+r+3)(r+1)(k+r+2)(2(k+r/2+3/2)(r+1)c(k+r+2)_F1((xn(ax)n/2WhittakerM(n/2,n/2+1/2,ax)e1/2axβ+ay(n+1))eax(n+1)a,(xme1/2bx(bx)m/2WhittakerM(m/2,m/2+1/2,bx)γ+bz(m+1))ebxb(m+1))+exk+1c2k+2xk+r(k+1)(xk+1ck+1)kr22k+2s(ck+1)r1k+1((k+1)(xk+1c+k+r+2)WhittakerM(k+r2k+2,2k+r+32k+2,xk+1ck+1)+WhittakerM(k+r+22k+2,2k+r+32k+2,xk+1ck+1)(k+r+2)2)(ck+1)r+1k+1)exk+1ck+1

____________________________________________________________________________________

6.9.4.7 [1947] Problem 7

problem number 1947

Added Jan 16, 2020.

Problem Chapter 9.2.4.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1xn1y+a2xn2)wy+(b1ym1z+b2ym2)wz=cw+s1xyk1+s2xk2z

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*x^n1*y + a2*x^n2)*D[w[x,y,z],y]+(b1*y^m1*z + b2*y^m2)*D[w[x,y,z],z]==c*w[x,y,z]+ s1*x*y^k1+ s2*x^k2*z; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecx(c1(a2(n1+1)n2n1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)a1n2+1n1+1+ea1xn1+1n1+1y,e1xb1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]z1xb2e1K[2]InverseFunction[Inactive[Integrate],1,2][log(e1xb1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]),{K[1],1,x}]dK[1](a1n2+1n1+1ea1(K[2]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[2]n1+1n1+1))(n1+1)))m2dK[2])+1xecK[3](s1K[3](a1n2+1n1+1ea1(K[3]n1+1xn1+1)n1+1((n1+1)ya1n2+1n1+1+a2ea1xn1+1n1+1(n1+1)n2+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)a2ea1xn1+1n1+1(n1+1)n2+1n1+1Gamma(n2+1n1+1,a1K[3]n1+1n1+1))n1+1)k1+eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(e1K[3]b1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1],{K[1],1,K[2]}],{K[1],1,K[3]}]1xb1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]s2zK[3]k2eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(e1K[3]b1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1],{K[1],1,K[2]}],{K[1],1,K[3]}]s2K[3]k21xb2e1K[2]InverseFunction[Inactive[Integrate],1,2][log(e1xb1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]),{K[1],1,x}]dK[1](a1n2+1n1+1ea1(K[2]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[2]n1+1n1+1))(n1+1)))m2dK[2]+eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(e1K[3]b1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1],{K[1],1,K[2]}],{K[1],1,K[3]}]s2K[3]k21K[3]b2e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(eInverseFunction[InverseFunction[Inactive[Integrate],1,2],1,2][InverseFunction[Inactive[Integrate],1,2][log(e1K[2]InverseFunction[Inactive[Integrate],1,2][log(e1K[3]b1(a1n2+1n1+1ea1(K[1]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[1]n1+1n1+1))(n1+1)))m1dK[1]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1]),{K[1],1,K[2]}],{K[1],1,K[3]}]),{K[1],1,K[3]}]dK[1](a1n2+1n1+1ea1(K[2]n1+1xn1+1)n1+1(n1+1)n1n1+11(a2ea1xn1+1n1+1Gamma(n2+1n1+1,a1xn1+1n1+1)(n1+1)n1+n2+1n1+1+(a1n2+1n1+1(n1+1)n1n1+1ya2ea1xn1+1n1+1(n1+1)n2n1+1Gamma(n2+1n1+1,a1K[2]n1+1n1+1))(n1+1)))m2dK[2])dK[3])}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*x^(n__1)*y + a__2*x^(n__2))*diff(w(x,y,z),y)+ (b__1*y^(m__1)*z + b__2*y^(m__2))*diff(w(x,y,z),z)=c*w(x,y,z)+ s__1*x*y^(k__1)+ s__2*x^(k__2)*z; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

Expression too large to display

____________________________________________________________________________________

6.9.4.8 [1948] Problem 8

problem number 1948

Added Jan 16, 2020.

Problem Chapter 9.2.4.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1xλ1y+a2xλ2yk)wy+(b1xβ1z+b2xβ2zm)wz=c1xγ1w+c2yγ2

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*x^lambda1*y + a2*x^lambda2*y^k)*D[w[x,y,z],y]+(b1*x^beta1*z + b2*x^beta2*z^m)*D[w[x,y,z],z]==c1*x^gamma1*w[x,y,z]+ c2*y^gamma2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ec1xgamma1+1gamma1+1(1xc2ec1K[1]gamma1+1gamma1+1(((1)lambda2+1lambda1+1a1lambda2+1lambda1+1exp(a1(xlambda1+1+(k1)K[1]lambda1+1)lambda1+1)(k1)lambda2+1lambda1+1yk(a2ea1xlambda1+1lambda1+1(k1)(lambda1+1)lambda2+1lambda1+1Gamma(lambda2+1lambda1+1,a1(k1)xlambda1+1lambda1+1)yk+a2ea1xlambda1+1lambda1+1(k1)(lambda1+1)lambda2+1lambda1+1Gamma(lambda2+1lambda1+1,a1(k1)K[1]lambda1+1lambda1+1)yk+(1)lambda2+1lambda1+1a1lambda2+1lambda1+1ea1kxlambda1+1lambda1+1(k1)lambda2+1lambda1+1(lambda1+1)y)lambda1+1)11k)gamma2dK[1]+c1(b2(1)beta1beta2beta1+1(beta1+1)beta2beta1beta1+1b1beta2+1beta1+1(m1)beta1beta2beta1+1Gamma(beta2+1beta1+1,b1(m1)xbeta1+1beta1+1)+z1meb1(m1)xbeta1+1beta1+1,a2(1)lambda1lambda2lambda1+1(lambda1+1)lambda2lambda1lambda1+1a1lambda2+1lambda1+1(k1)lambda1lambda2lambda1+1Gamma(lambda2+1lambda1+1,a1(k1)xlambda1+1lambda1+1)+y1kea1(k1)xlambda1+1lambda1+1))}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*x^(lambda__1)*y + a__2*x^(lambda__2)*y^k)*diff(w(x,y,z),y)+ (b__1*x^(beta__1)*z + b__2*x^(beta__2)*z^m)*diff(w(x,y,z),z)=c__1*x^(gamma__1)*w(x,y,z)+ c__2*y^(gamma__2); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(xc2((1a1(2λ1+λ2+3)(λ1+λ2+2)(λ2+1)(((λ1λ22)xλ2λ1+a1xλ2+1(k1))a2ykλ1λ1+1ykλ1+1ea1(k1)xλ1+12λ1+2ea1xλ1+1λ1+1(λ1+1)2(a1(k1)xλ1+1λ1+1)λ1λ222λ1+2WhittakerM(λ2λ12λ1+2,2λ1+λ2+32λ1+2,a1(k1)xλ1+1λ1+1)((λ1λ22)_aλ2λ1+_aλ2+1a1(k1))(λ1+1)2ea1_aλ1+1(k1)2λ1+2ea1xλ1+1λ1+1(a1_aλ1+1(k1)λ1+1)λ1λ222λ1+2a2ykλ1+1ykλ1λ1+1WhittakerM(λ2λ12λ1+2,2λ1+λ2+32λ1+2,a1_aλ1+1(k1)λ1+1)+2(1/2ea1(k1)xλ1+12λ1+2xλ2λ1(a1(k1)xλ1+1λ1+1)λ1λ222λ1+2a2ykλ1λ1+1ykλ1+1ea1xλ1+1λ1+1(λ1+1)(λ1+λ2+2)WhittakerM(λ1+λ2+22λ1+2,2λ1+λ2+32λ1+2,a1(k1)xλ1+1λ1+1)+1/2ea1_aλ1+1(k1)2λ1+2_aλ2λ1(a1_aλ1+1(k1)λ1+1)λ1λ222λ1+2a2ykλ1λ1+1ykλ1+1ea1xλ1+1λ1+1(λ1+1)(λ1+λ2+2)WhittakerM(λ1+λ2+22λ1+2,2λ1+λ2+32λ1+2,a1_aλ1+1(k1)λ1+1)+ea1xλ1+1kλ1+1(λ2+1)y(λ1+1)1a1(λ1+λ2/2+3/2)yλ1λ1+1)(λ1+λ2+2))(ea1xλ1+1λ1+1)1(ykλ1+1)1(ykλ1λ1+1)1)(k1)1ea1_aλ1+1λ1+1)γ2ec1_aγ1+1γ1+1d_a+_F1(1a1(2λ1+λ2+3)(λ1+λ2+2)(λ2+1)(((λ1λ22)xλ2λ1+a1xλ2+1(k1))a2ykλ1λ1+1ykλ1+1ea1(k1)xλ1+12λ1+2ea1xλ1+1λ1+1(λ1+1)2(a1(k1)xλ1+1λ1+1)λ1λ222λ1+2WhittakerM(λ2λ12λ1+2,2λ1+λ2+32λ1+2,a1(k1)xλ1+1λ1+1)+2(λ1+λ2+2)(1/2ea1(k1)xλ1+12λ1+2xλ2λ1(a1(k1)xλ1+1λ1+1)λ1λ222λ1+2a2ykλ1λ1+1ykλ1+1ea1xλ1+1λ1+1(λ1+1)(λ1+λ2+2)WhittakerM(λ1+λ2+22λ1+2,2λ1+λ2+32λ1+2,a1(k1)xλ1+1λ1+1)+ea1xλ1+1kλ1+1(λ2+1)y(λ1+1)1a1(λ1+λ2/2+3/2)yλ1λ1+1))(ea1xλ1+1λ1+1)1(ykλ1+1)1(ykλ1λ1+1)1,1b1(β2+1)(β1+β2+2)(2β1+β2+3)(((β1β22)xβ1+β2+b1xβ2+1(m1))b2zβ1mβ1+1zmβ1+1exβ1+1b1(m1)2β1+2eb1xβ1+1β1+1(β1+1)2(xβ1+1b1(m1)β1+1)β1β222β1+2WhittakerM(β1+β22β1+2,2β1+β2+32β1+2,xβ1+1b1(m1)β1+1)+2(β1+β2+2)(1/2exβ1+1b1(m1)2β1+2xβ1+β2(xβ1+1b1(m1)β1+1)β1β222β1+2b2zβ1mβ1+1zmβ1+1eb1xβ1+1β1+1(β1+1)(β1+β2+2)WhittakerM(β1+β2+22β1+2,2β1+β2+32β1+2,xβ1+1b1(m1)β1+1)+eb1xβ1+1mβ1+1(β2+1)z(β1+1)1b1(β1+β2/2+3/2)zβ1β1+1))(zβ1mβ1+1)1(zmβ1+1)1(eb1xβ1+1β1+1)1))exγ1+1c1γ1+1

____________________________________________________________________________________

6.9.4.9 [1949] Problem 9

problem number 1949

Added Jan 16, 2020.

Problem Chapter 9.2.4.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1xλ1y+a2xλ2yk)wy+(b1yβ1z+b2yβ2zm)wz=c1xγ1w+c2zγ2

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*x^lambda1*y + a2*x^lambda2*y^k)*D[w[x,y,z],y]+(b1*y^beta1*z + b2*y^beta2*z^m)*D[w[x,y,z],z]==c1*x^gamma1*w[x,y,z]+ c2*z^gamma2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*x^(lambda__1)*y + a__2*x^(lambda__2)*y^k)*diff(w(x,y,z),y)+ (b__1*y^(beta__1)*z + b__2*y^(beta__2)*z^m)*diff(w(x,y,z),z)=c__1*x^(gamma__1)*w(x,y,z)+ c__2*z^(gamma__2); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

time expired

____________________________________________________________________________________

6.9.4.10 [1950] Problem 10

problem number 1950

Added Jan 16, 2020.

Problem Chapter 9.2.4.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) xwx+aywy+bzwz=cxnw+kxm

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x,y,z],x]+a*y*D[w[x,y,z],y]+b*z*D[w[x,y,z],z]==c*x^n*w[x,y,z]+ k*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxnn(c1(yxa,zxb)kxm(cxnn)mnGamma(mn,cxnn)n)}}

Maple

restart; 
local gamma; 
pde :=  x*diff(w(x,y,z),x)+ a*y*diff(w(x,y,z),y)+ b*z*diff(w(x,y,z),z)=c*x^n*w(x,y,z)+ k*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1m(m+n)(m+2n)cexncn(xn+m(cn)mn(cn)mne1/2xncn(xncn)1/2m+nnkn2(xnc+m+n)WhittakerM(1/2n+mn,1/2m+2nn,xncn)+(xn+m(cn)mn(cn)mne1/2xncn(xncn)1/2m+nnkn(m+n)WhittakerM(1/2m+nn,1/2m+2nn,xncn)+_F1(yxa,zxb)cm(m+2n))(m+n))

____________________________________________________________________________________

6.9.4.11 [1951] Problem 11

problem number 1951

Added Jan 16, 2020.

Problem Chapter 9.2.4.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) xwx+azwy+bywz=cxnw+kxm

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x,y,z],x]+a*z*D[w[x,y,z],y]+b*y*D[w[x,y,z],z]==c*x^n*w[x,y,z]+ k*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecxnn(kxm(cxnn)mnGamma(mn,cxnn)n+c1(iysinh(ablog(x))iazcosh(ablog(x))b,ycosh(ablog(x))azsinh(ablog(x))b))}}

Maple

restart; 
local gamma; 
pde :=  x*diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y)+ b*y*diff(w(x,y,z),z)=c*x^n*w(x,y,z)+ k*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(yka(az2+(_b2y2)b)(x(aby+az)abab(ab_b+a(az2+(_b2y2)b)abab)1ab)mec1a(az2+(_b2y2)b)(x(aby+az)abab(ab_b+a(az2+(_b2y2)b)abab)1ab)nd_bd_b+_F1(az2by2a,x(aby+az)abab))eyca(az2+(_a2y2)b)(x(aby+az)abab(ab_a+a(az2+(_a2y2)b)abab)1ab)nd_a

____________________________________________________________________________________

6.9.4.12 [1952] Problem 12

problem number 1952

Added Jan 16, 2020.

Problem Chapter 9.2.4.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) bcxwx+c(by+cz)wy+b(bycz)wz=kxnw+sxm

Mathematica

ClearAll["Global`*"]; 
pde =  b*c*x*D[w[x,y,z],x]+ c*(b*y + c*z)*D[w[x,y,z],y]+b*(b*y - c*z)*D[w[x,y,z],z]==k*x^n*w[x,y,z]+ s*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  b*c*x*diff(w(x,y,z),x)+ c*(b*y + c*z)*diff(w(x,y,z),y)+ b*(b*y - c*z)*diff(w(x,y,z),z)=k*x^n*w(x,y,z)+ s*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(ysb2y2+2bzcy+c2z2c(x((2b2yb2y2+2bzcy+c2z2+(byb2y2+2bzcy+c2z2+czb2y2+2bzcy+c2z2)b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2((b2_b2b2y2+2bzcy+c2z2+2b2_b2b2y2+2bzcy+c2z2+1b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2)mekb2y2+2bzcy+c2z2c(x((2b2yb2y2+2bzcy+c2z2+(byb2y2+2bzcy+c2z2+czb2y2+2bzcy+c2z2)b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2((b2_b2b2y2+2bzcy+c2z2+2b2_b2b2y2+2bzcy+c2z2+1b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2)n12b2_b2b2y2+2bzcy+c2z2+1d_b12b2_b2b2y2+2bzcy+c2z2+1d_b+_F1(1b2y2+2bzcy+c2z2,x((2b2yb2y2+2bzcy+c2z2+(byb2y2+2bzcy+c2z2+czb2y2+2bzcy+c2z2)b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2))eykb2y2+2bzcy+c2z2c(x((2b2yb2y2+2bzcy+c2z2+(byb2y2+2bzcy+c2z2+czb2y2+2bzcy+c2z2)b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2((_ab22b2y2+2bzcy+c2z2+2_a2b2b2y2+2bzcy+c2z2+1b2b2y2+2bzcy+c2z2)1b2b2y2+2bzcy+c2z2)1/2b2b2y2+2bzcy+c2z21b2b2y2+2bzcy+c2z2)n12_a2b2b2y2+2bzcy+c2z2+1d_a

____________________________________________________________________________________

6.9.4.13 [1953] Problem 13

problem number 1953

Added Jan 16, 2020.

Problem Chapter 9.2.4.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) b1xn1wx+b2yn2wy+b3zn3wz=aw+c1xk1+c2yk2+c3xk3

Mathematica

ClearAll["Global`*"]; 
pde =  b1*x^n1*D[w[x,y,z],x]+ b2*y^n2*D[w[x,y,z],y]+b3*z^n3*D[w[x,y,z],z]==a*w[x,y,z]+ c1*x^k1+c2*y^k2+c3*x^k3; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)eax1n1b1b1n1(1xeaK[1]1n1b1(n11)K[1]n1(c1K[1]k1+c3K[1]k3+c2((b2(n21)xn1(xn1K[1]xK[1]n1)K[1]n1b1(n11)+(1y)n21)11n2)k2)b1dK[1]+c1(b2x1n1b1(n11)(1y)n21n21,b3x1n1b1(n11)(1z)n31n31))}}

Maple

restart; 
local gamma; 
pde :=   b__1*x^(n__1)*diff(w(x,y,z),x)+ b__2*y^(n__2)*diff(w(x,y,z),y)+ b__3*z^(n__3)*diff(w(x,y,z),z)=a*w(x,y,z)+ c__1*x^(k__1)+c__2*y^(k__2)+c__3*x^(k__3); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(x1b1e_an1+1a(n11)b1(_an1c2((xn1+1b2(n21)+y1n2b1(n11)+_an1+1b2(n21)(n11)b1)(n21)1)k2+_an1+k1c1+_an1+k3c3)d_a+_F1(xn1+1b2(n21)+y1n2b1(n11)(n11)b1,xn1+1b3(n31)+z1n3b1(n11)(n11)b1))exn1+1a(n11)b1

____________________________________________________________________________________

6.9.4.14 [1954] Problem 14

problem number 1954

Added Jan 16, 2020.

Problem Chapter 9.2.4.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) a1xn1wx+a2yn2wy+a3zn3wz=bxkw+cxm

Mathematica

ClearAll["Global`*"]; 
pde =  a1*x^n1*D[w[x,y,z],x]+ a2*y^n2*D[w[x,y,z],y]+a3*z^n3*D[w[x,y,z],z]==b*x^k*w[x,y,z]+ c*x^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ebxkn1+1a1ka1n1+a1(c1(a2x1n1a1(n11)(1y)n21n21,a3x1n1a1(n11)(1z)n31n31)cxmn1+1(bxkn1+1a1ka1n1+a1)m+n11kn1+1Gamma(mn1+1kn1+1,bxkn1+1a1ka1n1+a1)a1(kn1+1))}}

Maple

restart; 
local gamma; 
pde :=   a__1*x^(n__1)*diff(w(x,y,z),x)+ a__2*y^(n__2)*diff(w(x,y,z),y)+ a__3*z^(n__3)*diff(w(x,y,z),z)=b*x^k*w(x,y,z)+ x*x^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=61(m+n12)a1(km+2n13)(2km+3n14)bebxkn1+1a1(kn1+1)(a1(m+n12)b(k/2m/2+n13/2)(2/3km/3+n14/3)_F1(xn1+1a2(n21)+y1n2a1(n11)(n11)a1,xn1+1a3(n31)+z1n3a1(n11)(n11)a1)1/6(ba1(kn1+1))mn1+2kn1+1(bxkn1+1a1(kn1+1))km+2n132k2n1+2(ba1(kn1+1))m+n12kn1+1(4a1(k/2m/2+n13/2)2WhittakerM(k+m2n1+32k2n1+2,2k+m3n1+42k2n1+2,bxkn1+1a1(kn1+1))+(bxkn1+12a1(k/2m/2+n13/2))WhittakerM(k+1+m2k2n1+2,2k+m3n1+42k2n1+2,bxkn1+1a1(kn1+1))(k+n11))e1/2bxkn1+1a1(kn1+1)xk+1+m(k+n11))

____________________________________________________________________________________