Added June 27, 2019.
Problem Chapter 8.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*D[w[x,y,z],z]== (alpha*x+beta*y+gamma*z+delta)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*diff(w(x,y,z),z)= (alpha*x+beta*y+gamma*z+delta)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*z*D[w[x, y,z], y] + b*y*D[w[x,y,z],z]== (c*x+s)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y)+ b*y*diff(w(x,y,z),z)= (c*x+s)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a1*x+a0)*D[w[x, y,z], y] + (b1*x+b0)*D[w[x,y,z],z]== (alpha*x+beta*y+gamma*z+delta)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a1*x+a0)*diff(w(x,y,z),y)+ (b1*x+b0)*diff(w(x,y,z),z)= (alpha*x+beta*y+gamma*z+delta)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a2*y+a1*x+a0)*D[w[x, y,z], y] + (b2*y+b1*x+b0)*D[w[x,y,z],z]== (c2*y+c1*z+c0*x+s)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a2*y+a1*x+a0)*diff(w(x,y,z),y)+ (b2*y+b1*x+b0)*diff(w(x,y,z),z)= (c2*y+c1*z+c0*x+s)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a*y+k1*x+k0)*D[w[x, y,z], y] + (b*z+s1*x+s0)*D[w[x,y,z],z]== (c1*x+c0)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+(a*y+k1*x+k0)*diff(w(x,y,z),y)+(b*z+s1*x+s0)*diff(w(x,y,z),z)= (c1*x+c0)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] + c*z*D[w[x,y,z],z]== (alpha*x+beta*y+gamma*z+beta)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*x*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+c*z*diff(w(x,y,z),z)= (alpha*x+beta*y+gamma*z+beta)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] + a*z*D[w[x, y,z], y] + b*y*D[w[x,y,z],z]== c*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := x*diff(w(x,y,z),x)+ a*z*y*diff(w(x,y,z),y)+b*y*diff(w(x,y,z),z)= c*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = a*b*x*D[w[x, y,z], x] + b*(a*y+b*z)*D[w[x, y,z], y] + a*(a*y-b*z)*D[w[x,y,z],z]== c*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a*b*x*diff(w(x,y,z),x)+ b*(a*y+b*z)*diff(w(x,y,z),y)+a*(a*y-b*z)*diff(w(x,y,z),z)= c*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 27, 2019.
Problem Chapter 8.2.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = (a1*x+a0)*D[w[x, y,z], x] + (b1*y+b0)*D[w[x, y,z], y] +(c1*z+c0)*D[w[x,y,z],z]== (alpha*x+beta*y+gamma*z+delta)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := (a1*x+a0)*diff(w(x,y,z),x)+(b1*y+b0)*diff(w(x,y,z),y)+(c1*z+c0)*diff(w(x,y,z),z)= (alpha*x+beta*y+gamma*z+delta)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________