6.8.2 2.2

6.8.2.1 [1759] Problem 1
6.8.2.2 [1760] Problem 2
6.8.2.3 [1761] Problem 3
6.8.2.4 [1762] Problem 4
6.8.2.5 [1763] Problem 5
6.8.2.6 [1764] Problem 6
6.8.2.7 [1765] Problem 7
6.8.2.8 [1766] Problem 8
6.8.2.9 [1767] Problem 9

6.8.2.1 [1759] Problem 1

problem number 1759

Added June 28, 2019.

Problem Chapter 8.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c w_z = (\lambda x^2 +\beta y^2+\gamma z^2+\delta ) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*D[w[x,y,z],z]== (alpha*x^2+beta*y^2+gamma*z^2+delta)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},z-\frac {c x}{a}\right ) \exp \left (\frac {1}{3} \left (\frac {\alpha x^3+3 \delta x}{a}+\frac {\beta y^3}{b}+\frac {\gamma z^3}{c}\right )\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   a*diff(w(x,y,z),x)+b*diff(w(x,y,z),y)+c*diff(w(x,y,z),z)=  (alpha*x^2+beta*y^2+gamma*z^2+delta)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ay-xb}{a}},{\frac {za-cx}{a}} \right ) {{\rm e}^{{\frac {x}{{a}^{3}} \left ( \left ( \beta \,{y}^{2}+\gamma \,{z}^{2}+{\frac {\alpha \,{x}^{2}}{3}}+\delta \right ) {a}^{2}-x \left ( b\beta \,y+c\gamma \,z \right ) a+{\frac {{x}^{2} \left ( {b}^{2}\beta +{c}^{2}\gamma \right ) }{3}} \right ) }}}\]

____________________________________________________________________________________

6.8.2.2 [1760] Problem 2

problem number 1760

Added June 28, 2019.

Problem Chapter 8.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + (a_1 x^2+a_0) w_y + (b_1 x^2+b_0) w_z = (\lambda x +\beta y+\gamma z+\delta ) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (a1*x^2+a0)*D[w[x, y,z], y] +(b1*x^2+b0)*D[w[x,y,z],z]== (alpha*x+beta*y+gamma*z+delta)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (-\text {a0} x-\frac {\text {a1} x^3}{3}+y,-\text {b0} x-\frac {\text {b1} x^3}{3}+z\right ) \exp \left (-\frac {1}{4} x \left (2 \text {a0} \beta x+\text {a1} \beta x^3-2 \alpha x+2 \text {b0} \gamma x+\text {b1} \gamma x^3-4 \beta y-4 \delta -4 \gamma z\right )\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   diff(w(x,y,z),x)+(a1*x^2+a0)*diff(w(x,y,z),y)+(b1*x^2+b0)*diff(w(x,y,z),z)=  (alpha*x+beta*y+gamma*z+delta)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( -{\frac {{\it a1}\,{x}^{3}}{3}}-{\it a0}\,x+y,-{\frac {{\it b1}\,{x}^{3}}{3}}-{\it b0}\,x+z \right ) {{\rm e}^{-{\frac {x \left ( \left ( {\it b1}\,{x}^{3}+2\,{\it b0}\,x-4\,z \right ) \gamma + \left ( {\it a1}\,{x}^{3}+2\,{\it a0}\,x-4\,y \right ) \beta -2\,\alpha \,x-4\,\delta \right ) }{4}}}}\]

____________________________________________________________________________________

6.8.2.3 [1761] Problem 3

problem number 1761

Added June 28, 2019.

Problem Chapter 8.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + (a y+ k_1 x^2+k_0) w_y + (b z+s_1 x^2+s_0) w_z = (c_1 x^2+c_0) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (a*y+k1*x^2+k0)*D[w[x, y,z], y] +(b*z+s1*x^2+s0)*D[w[x,y,z],z]== (c1*x^2+c0)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to e^{\text {c0} x+\frac {\text {c1} x^3}{3}} c_1\left (\frac {e^{-a x} \left (a^2 \left (\text {k0}+\text {k1} x^2\right )+a^3 y+2 a \text {k1} x+2 \text {k1}\right )}{a^3},\frac {e^{-b x} \left (b^2 \left (\text {s0}+\text {s1} x^2\right )+b^3 z+2 b \text {s1} x+2 \text {s1}\right )}{b^3}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   diff(w(x,y,z),x)+(a*y+k1*x^2+k0)*diff(w(x,y,z),y)+(b*z+s1*x^2+s0)*diff(w(x,y,z),z)=  (c1*x^2+c0)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {{{\rm e}^{-ax}} \left ( y{a}^{3}+ \left ( {\it k1}\,{x}^{2}+{\it k0} \right ) {a}^{2}+2\,{\it k1}\,xa+2\,{\it k1} \right ) }{{a}^{3}}},{\frac {{{\rm e}^{-xb}} \left ( z{b}^{3}+ \left ( {\it s1}\,{x}^{2}+{\it s0} \right ) {b}^{2}+2\,{\it s1}\,xb+2\,{\it s1} \right ) }{{b}^{3}}} \right ) {{\rm e}^{{\frac {x \left ( {\it c1}\,{x}^{2}+3\,{\it c0} \right ) }{3}}}}\]

____________________________________________________________________________________

6.8.2.4 [1762] Problem 4

problem number 1762

Added June 28, 2019.

Problem Chapter 8.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + (a_2 x y+ a_1 x^2+a_0) w_y + (b_2 x y+b_1 x^2+b_0) w_z = (c_2 y+c_1 z+c_0 x+s) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (a1*x*y+a1*x^2+a0)*D[w[x, y,z], y] +(b2*x*y+b1*x^2+b0)*D[w[x,y,z],z]== (c2*x+c1*z+c0*x+s)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\text {a0} \text {b2} x}{\text {a1}}-\frac {\text {b2} y}{\text {a1}}-\text {b0} x-\frac {\text {b1} x^3}{3}+\frac {\text {b2} x^3}{3}+z,e^{-\frac {\text {a1} x^2}{2}} (x+y)-\frac {\sqrt {\frac {\pi }{2}} (\text {a0}+1) \text {Erf}\left (\frac {\sqrt {\text {a1}} x}{\sqrt {2}}\right )}{\sqrt {\text {a1}}}\right ) \exp \left (\frac {2 (\text {a0}+1) \text {a1} \text {b2} \text {c1} x^2 \, _2F_2\left (1,1;\frac {3}{2},2;\frac {\text {a1} x^2}{2}\right )+\text {a1} x \left (2 \text {b2} \text {c1} ((\text {a0}-1) x-2 y)+\text {a1} \left (-2 \text {b0} \text {c1} x-\text {b1} \text {c1} x^3+\text {b2} \text {c1} x^3+2 \text {c0} x+4 \text {c1} z+2 \text {c2} x+4 s\right )\right )+2 \text {b2} \text {c1} e^{-\frac {\text {a1} x^2}{2}} \text {Erfi}\left (\frac {\sqrt {\text {a1}} x}{\sqrt {2}}\right ) \left (\sqrt {2 \pi } \sqrt {\text {a1}} (x+y)-\pi (\text {a0}+1) e^{\frac {\text {a1} x^2}{2}} \text {Erf}\left (\frac {\sqrt {\text {a1}} x}{\sqrt {2}}\right )\right )}{4 \text {a1}^2}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   diff(w(x,y,z),x)+(a1*x*y+a1*x^2+a0)*diff(w(x,y,z),y)+(b2*x*y+b1*x^2+b0)*diff(w(x,y,z),z)=  (c2*x+c1*z+c0*x+s)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( { \left ( \sqrt {{\it a1}} \left ( x+y \right ) {{\rm e}^{-{\frac {{\it a1}\,{x}^{2}}{2}}}}-{\frac {\sqrt {\pi }\sqrt {2} \left ( {\it a0}+1 \right ) }{2}\erf \left ( {\frac {\sqrt {2}x}{2}\sqrt {{\it a1}}} \right ) } \right ) {\frac {1}{\sqrt {{\it a1}}}}},-{\frac {1}{3\,{\it a1}} \left ( 3\,{\it b2}\, \left ( \sqrt {{\frac {{\it a1}}{\pi }}} \left ( x+y \right ) {{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-1/2\,\sqrt {2}\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) \left ( {\it a0}+1 \right ) \left ( {\frac {\sqrt {\pi }}{\sqrt {{\it a1}}}\sqrt {{\frac {{\it a1}}{\pi }}}}-1 \right ) \right ) {{\rm e}^{1/2\,{\it a1}\,{x}^{2}}}+\sqrt {{\frac {{\it a1}}{\pi }}} \left ( -x \left ( {\it a1}\,{x}^{2}+3\,{\it a0}+3 \right ) {\it b2}+{\it a1}\, \left ( {\it b1}\,{x}^{3}+3\,{\it b0}\,x-3\,z \right ) \right ) \right ) {\frac {1}{\sqrt {{\frac {{\it a1}}{\pi }}}}}} \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{6\,{\it a1}} \left ( -2\,{{\it c1} \left ( 3\,\sqrt {{\frac {{\it a1}}{\pi }}}{{\rm e}^{1/2\,{\it a1}\,{x}^{2}}}{\it b2}\, \left ( x+y \right ) {{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-3/2\,{\it b2}\,\sqrt {2}\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_a} \right ) \left ( {\it a0}+1 \right ) {{\rm e}^{1/2\,{\it a1}\,{{\it \_a}}^{2}}}-3/2\,\sqrt {2}\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) {\it b2}\, \left ( {\it a0}+1 \right ) \left ( {\frac {\sqrt {\pi }}{\sqrt {{\it a1}}}\sqrt {{\frac {{\it a1}}{\pi }}}}-1 \right ) {{\rm e}^{1/2\,{\it a1}\,{x}^{2}}}+\sqrt {{\frac {{\it a1}}{\pi }}} \left ( -x \left ( {\it a1}\,{x}^{2}+3\,{\it a0}+3 \right ) {\it b2}+{\it a1}\, \left ( {\it b1}\,{x}^{3}+3\,{\it b0}\,x-3\,z \right ) \right ) \right ) {\frac {1}{\sqrt {{\frac {{\it a1}}{\pi }}}}}}-3\, \left ( \left ( -2\,x-2\,y \right ) {{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}+{\frac {\sqrt {2}\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) \sqrt {\pi } \left ( {\it a0}+1 \right ) }{\sqrt {{\it a1}}}} \right ) {\it c1}\,{\it b2}\,{{\rm e}^{1/2\,{\it a1}\,{{\it \_a}}^{2}}}-2\,{\it c1}\,{\it \_a}\, \left ( {\it a1}\,{{\it \_a}}^{2}+3\,{\it a0}+3 \right ) {\it b2}+6\, \left ( 1/3\,{\it b1}\,{\it c1}\,{{\it \_a}}^{3}+ \left ( {\it b0}\,{\it c1}+{\it c0}+{\it c2} \right ) {\it \_a}+s \right ) {\it a1} \right ) }{d{\it \_a}}}}\]

____________________________________________________________________________________

6.8.2.5 [1763] Problem 5

problem number 1763

Added June 28, 2019.

Problem Chapter 8.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a x w_x + b y w_y + c z w_z = x(\lambda x+\beta y+\gamma z) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +c*z*D[w[x,y,z],z]== x*(lambda*x+beta*y+gama*z)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (y x^{-\frac {b}{a}},z x^{-\frac {c}{a}}\right ) e^{\frac {\beta x y}{a+b}+\frac {\text {gama} x z}{a+c}+\frac {\lambda x^2}{2 a}}\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   a*x*diff(w(x,y,z),x)+b*y*diff(w(x,y,z),y)+c*z*diff(w(x,y,z),z)=  x*(lambda*x+beta*y+gama*z)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( y{x}^{-{\frac {b}{a}}},z{x}^{-{\frac {c}{a}}} \right ) {{\rm e}^{{\frac {x \left ( \left ( 2\,\beta \,y+2\,{\it gama}\,z+x\lambda \right ) {a}^{2}+ \left ( \lambda \, \left ( b+c \right ) x+2\,bz{\it gama}+2\,cy\beta \right ) a+xb\lambda \,c \right ) }{2\,a \left ( a+b \right ) \left ( a+c \right ) }}}}\]

____________________________________________________________________________________

6.8.2.6 [1764] Problem 6

problem number 1764

Added June 28, 2019.

Problem Chapter 8.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a x^2 w_x + b x y w_y + c x z w_z = (\lambda x+\beta y+\gamma z) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*x*y*D[w[x, y,z], y] +c*x*z*D[w[x,y,z],z]== (lambda*x+beta*y+gama*z)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to x^{\frac {\lambda }{a}} e^{-\frac {\frac {\beta y}{a-b}+\frac {\text {gama} z}{a-c}}{x}} c_1\left (y x^{-\frac {b}{a}},z x^{-\frac {c}{a}}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*x*y*diff(w(x,y,z),y)+c*x*z*diff(w(x,y,z),z)=  (lambda*x+beta*y+gama*z)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={x}^{{\frac {\lambda }{a}}}{\it \_F1} \left ( y{x}^{-{\frac {b}{a}}},z{x}^{-{\frac {c}{a}}} \right ) {{\rm e}^{{\frac {-y \left ( a-c \right ) \beta -z{\it gama}\, \left ( -b+a \right ) }{ \left ( -b+a \right ) \left ( a-c \right ) x}}}}\]

____________________________________________________________________________________

6.8.2.7 [1765] Problem 7

problem number 1765

Added June 28, 2019.

Problem Chapter 8.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a x^2 w_x + b x y w_y + c z^2 w_z = k y^2 w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*x*y*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]== k*y^2*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to e^{-\frac {k y^2}{a x-2 b x}} c_1\left (y x^{-\frac {b}{a}},\frac {c}{a x}-\frac {1}{z}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*x*y*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=  k*y^2*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( y{x}^{-{\frac {b}{a}}},{\frac {ax-cz}{xza}} \right ) {{\rm e}^{-{\frac {k{y}^{2}}{x \left ( -2\,b+a \right ) }}}}\]

____________________________________________________________________________________

6.8.2.8 [1766] Problem 8

problem number 1766

Added June 28, 2019.

Problem Chapter 8.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a x^2 w_x + b y^2 w_y + c z^2 w_z = k x y w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]== k*x*y*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \left (\frac {a x}{y}\right )^{\frac {k x y}{a x-b y}} c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=  k*x*y*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ax-by}{xya}},{\frac {ax-cz}{xza}} \right ) \left ( {\frac {ax}{y}} \right ) ^{{\frac {kxy}{ax-by}}}\]

____________________________________________________________________________________

6.8.2.9 [1767] Problem 9

problem number 1767

Added June 28, 2019.

Problem Chapter 8.2.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\) \[ a x^2 w_x + b y^2 w_y + c z^2 w_z = (\lambda x^2+\beta y^2 + \gamma z^2) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]== (lambda*x^2+beta*y^2+gamma*z^2)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right ) \exp \left (\frac {\beta y^2}{b y-a x}+\frac {\gamma z^2}{c z-a x}+\frac {\lambda x}{a}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=  (lambda*x^2+beta*y^2+gamma*z^2)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ax-by}{xya}},{\frac {ax-cz}{xza}} \right ) {{\rm e}^{{\frac {x \left ( -\beta \,{y}^{2}-\gamma \,{z}^{2}+{x}^{2}\lambda \right ) {a}^{2}+ \left ( cz\beta \,{y}^{2}-b \left ( -\gamma \,{z}^{2}+{x}^{2}\lambda \right ) y-c{x}^{2}z\lambda \right ) a+bcxyz\lambda }{a \left ( ax-by \right ) \left ( ax-cz \right ) }}}}\]

____________________________________________________________________________________