Added March 23, 2019.
Problem Chapter 1.1.1.1, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\) \[ w_t = a w_{xx} + b w^2 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, t], t] == a*D[w[x, t], {x, 2}] + b*w[x, t]^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,t),t)= a*diff(w(x,t),x$2) + b*w(x,t)^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
sol=()
____________________________________________________________________________________
Added March 23, 2019.
Problem Chapter 1.1.1.2, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\)
\[ w_t = w_{xx} + a w(1-w) \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, t], t] == D[w[x, t], {x, 2}] + a*w[x, t]*(1 - w[x, t]); sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
\begin {align*} & \left \{w(x,t)\to \frac {1}{4} \left (1+\tanh \left (\frac {1}{12} \left (5 a t-\sqrt {6} \sqrt {a} x-12 c_3\right )\right )\right ){}^2\right \}\\& \left \{w(x,t)\to -\frac {1}{4} \left (-3+\tanh \left (\frac {1}{12} \left (5 a t-i \sqrt {6} \sqrt {a} x-12 c_3\right )\right )\right ) \left (1+\tanh \left (\frac {1}{12} \left (5 a t-i \sqrt {6} \sqrt {a} x-12 c_3\right )\right )\right )\right \}\\& \left \{w(x,t)\to -\frac {1}{4} \left (-3+\tanh \left (\frac {1}{12} \left (5 a t+i \sqrt {6} \sqrt {a} x-12 c_3\right )\right )\right ) \left (1+\tanh \left (\frac {1}{12} \left (5 a t+i \sqrt {6} \sqrt {a} x-12 c_3\right )\right )\right )\right \}\\& \left \{w(x,t)\to \frac {1}{4} \left (1+\tanh \left (\frac {1}{12} \left (5 a t+\sqrt {6} \sqrt {a} x-12 c_3\right )\right )\right ){}^2\right \}\\& \left \{w(x,t)\to \frac {1}{4} \left (1+\tanh \left (\frac {5 a t}{12}-\frac {\sqrt {a} x}{2 \sqrt {6}}+c_3\right )\right ){}^2\right \}\\& \left \{w(x,t)\to -\frac {1}{4} \left (-3+\tanh \left (\frac {5 a t}{12}-\frac {i \sqrt {a} x}{2 \sqrt {6}}+c_3\right )\right ) \left (1+\tanh \left (\frac {5 a t}{12}-\frac {i \sqrt {a} x}{2 \sqrt {6}}+c_3\right )\right )\right \}\\& \left \{w(x,t)\to -\frac {1}{4} \left (-3+\tanh \left (\frac {5 a t}{12}+\frac {i \sqrt {a} x}{2 \sqrt {6}}+c_3\right )\right ) \left (1+\tanh \left (\frac {5 a t}{12}+\frac {i \sqrt {a} x}{2 \sqrt {6}}+c_3\right )\right )\right \}\\& \left \{w(x,t)\to \frac {1}{4} \left (1+\tanh \left (\frac {5 a t}{12}+\frac {\sqrt {a} x}{2 \sqrt {6}}+c_3\right )\right ){}^2\right \}\\ \end {align*}
Maple ✓
restart; pde := diff(w(x,t),t)= diff(w(x,t),x$2) + a*w(x,t)*(1-w(x,t)); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
\[w \left ( x,t \right ) =-{\frac {1}{4} \left ( \tanh \left ( -{\frac {5\,at}{12}}+{\frac {x}{12}\sqrt {-6\,a}}+{\it \_C1} \right ) \right ) ^{2}}-{\frac {1}{2}\tanh \left ( -{\frac {5\,at}{12}}+{\frac {x}{12}\sqrt {-6\,a}}+{\it \_C1} \right ) }+{\frac {3}{4}}\]
____________________________________________________________________________________