Added March 23, 2019.
Problem Chapter 1.1.2.1, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\)
\[ w_t = a w_{xx} - b w^3 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, t], t] == a*D[w[x, t], {x, 2}] - b*w[x, t]^3; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,t),t)= a*diff(w(x,t),x$2) - b*w(x,t)^3; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
sol=()
____________________________________________________________________________________
Added March 23, 2019.
Problem Chapter 1.1.2.2, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\) \[ w_t = w_{xx} + a w - b w^3 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, t], t] == D[w[x, t], {x, 2}] + a*w[x, t] - b*w[x, t]^3; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,t),t)= diff(w(x,t),x$2) +a*w(x,t)- b*w(x,t)^3; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
\[w \left ( x,t \right ) ={\frac {1}{2\,b}\sqrt {ab} \left ( \tanh \left ( -{\frac {3\,at}{4}}+{\frac {\sqrt {2}x}{4}\sqrt {a}}+{\it \_C1} \right ) -1 \right ) }\]
____________________________________________________________________________________
Added March 23, 2019.
Problem Chapter 1.1.2.3, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\) \[ w_t = a w_{xx} - b w^3 - c w^2 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, t], t] == a*D[w[x, t], {x, 2}] - b*w[x, t]^3 - c*w[x, t]^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,t),t)= a*diff(w(x,t),x$2) - b*w(x,t)^3- c*w(x,t)^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
\[w \left ( x,t \right ) ={\frac {c}{2\,b} \left ( \tanh \left ( -{\frac {{c}^{2}t}{4\,b}}+{\frac {\sqrt {2}cx}{4}{\frac {1}{\sqrt {ab}}}}+{\it \_C1} \right ) -1 \right ) }\]
____________________________________________________________________________________
Added March 23, 2019.
Problem Chapter 1.1.2.4, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\) \[ w_t = w_{xx} -w(1-w)(a-w) \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, t], t] == D[w[x, t], {x, 2}] - w[x, t]*(1 - w[x, t])*(a - w[x, t]); sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,t),t)= diff(w(x,t),x$2) - w(x,t)*(1-w(x,t))*(a-w(x,t)); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
\[w \left ( x,t \right ) ={\frac {1}{2}\tanh \left ( {\frac {\sqrt {2}x}{4}}+{\frac { \left ( -2\,a+1 \right ) t}{4}}+{\it \_C1} \right ) }+{\frac {1}{2}}\]
____________________________________________________________________________________
Added March 23, 2019.
Problem Chapter 1.1.2.5, from Handbook of nonlinear partial differential equations by Andrei D. Polyanin, Valentin F. Zaitsev.
Solve for \(w(x,t)\) \[ w_t = a w_{xx} +b_0+b_1 w+ b_2 w^2+ b_3 w^3 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, t], t] == a*D[w[x, t], {x, 2}] + b0 + b1*w[x, t] + b2*w[x, t]^2 + b3*w[x, t]^3; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, t], {x, t}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,t),t)= a*diff(w(x,t),x$2) +b0+b1*w(x,t)+b2*w(x,t)^2+b3*w(x,t)^3; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,t))),output='realtime'));
\[w \left ( x,t \right ) ={\frac {1}{ \left ( 54\,{{\it b3}}^{2}{\it b0}-18\,{\it b3}\,{\it b2}\,{\it b1}+4\,{{\it b2}}^{3} \right ) \left ( 24\,a{\it b3}\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}-3\,{\it b3}\,{\it b1}+{{\it b2}}^{2} \right ) } \left ( -2304\,\RootOf \left ( 12\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{4}{a}^{2}{\it b3}-6\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}a{\it b1}\,{\it b3}+2\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}a{{\it b2}}^{2}+{{\it \_Z}}^{2}{\it b3} \right ) \left ( a{\it b3}\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}-1/8\,{\it b3}\,{\it b1}+1/24\,{{\it b2}}^{2} \right ) ^{2}\tanh \left ( \RootOf \left ( 12\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{4}{a}^{2}{\it b3}-6\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}a{\it b1}\,{\it b3}+2\, \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}a{{\it b2}}^{2}+{{\it \_Z}}^{2}{\it b3} \right ) t+\RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) x+{\it \_C1} \right ) -432\, \left ( {{\it b3}}^{2}{\it b0}-1/3\,{\it b3}\,{\it b2}\,{\it b1}+{\frac {2\,{{\it b2}}^{3}}{27}} \right ) \left ( \left ( \RootOf \left ( 512\,{{\it b3}}^{2}{a}^{3}{{\it \_Z}}^{6}+ \left ( -384\,{a}^{2}{\it b1}\,{{\it b3}}^{2}+128\,{a}^{2}{{\it b2}}^{2}{\it b3} \right ) {{\it \_Z}}^{4}+ \left ( 72\,a{{\it b1}}^{2}{{\it b3}}^{2}-48\,a{\it b1}\,{{\it b2}}^{2}{\it b3}+8\,a{{\it b2}}^{4} \right ) {{\it \_Z}}^{2}-27\,{{\it b3}}^{3}{{\it b0}}^{2}+18\,{{\it b3}}^{2}{\it b2}\,{\it b0}\,{\it b1}-4\,{\it b3}\,{{\it b2}}^{3}{\it b0}-4\,{{\it b3}}^{2}{{\it b1}}^{3}+{\it b3}\,{{\it b2}}^{2}{{\it b1}}^{2} \right ) \right ) ^{2}a{\it b2}-{\frac {9\,{\it b3}\,{\it b0}}{16}}+1/16\,{\it b2}\,{\it b1} \right ) \right ) }\]
____________________________________________________________________________________