16.44 problem 517

16.44.1 Maple step by step solution

Internal problem ID [15286]
Internal file name [OUTPUT/15287_Wednesday_May_08_2024_03_54_48_PM_79180729/index.tex]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section: Chapter 2 (Higher order ODE’s). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132
Problem number: 517.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_high_order, _missing_x]]

\[ \boxed {y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y=1} \] This is higher order nonhomogeneous ODE. Let the solution be \[ y = y_h + y_p \] Where \(y_h\) is the solution to the homogeneous ODE And \(y_p\) is a particular solution to the nonhomogeneous ODE. \(y_h\) is the solution to \[ y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \] The characteristic equation is \[ \lambda ^{4}-2 \lambda ^{3}+2 \lambda ^{2}-2 \lambda +1 = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= i\\ \lambda _2 &= -i\\ \lambda _3 &= 1\\ \lambda _4 &= 1 \end {align*}

Therefore the homogeneous solution is \[ y_h(x)=c_{1} {\mathrm e}^{x}+x \,{\mathrm e}^{x} c_{2} +{\mathrm e}^{i x} c_{3} +{\mathrm e}^{-i x} c_{4} \] The fundamental set of solutions for the homogeneous solution are the following \begin{align*} y_1 &= {\mathrm e}^{x} \\ y_2 &= {\mathrm e}^{x} x \\ y_3 &= {\mathrm e}^{i x} \\ y_4 &= {\mathrm e}^{-i x} \\ \end{align*} Now the particular solution to the given ODE is found \[ y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \] The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is \[ 1 \] Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is \[ [\{1\}] \] While the set of the basis functions for the homogeneous solution found earlier is \[ \{{\mathrm e}^{x} x, {\mathrm e}^{x}, {\mathrm e}^{i x}, {\mathrm e}^{-i x}\} \] Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set. \[ y_p = A_{1} \] The unknowns \(\{A_{1}\}\) are found by substituting the above trial solution \(y_p\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives \[ A_{1} = 1 \] Solving for the unknowns by comparing coefficients results in \[ [A_{1} = 1] \] Substituting the above back in the above trial solution \(y_p\), gives the particular solution \[ y_p = 1 \] Therefore the general solution is \begin{align*} y &= y_h + y_p \\ &= \left (c_{1} {\mathrm e}^{x}+x \,{\mathrm e}^{x} c_{2} +{\mathrm e}^{i x} c_{3} +{\mathrm e}^{-i x} c_{4}\right ) + \left (1\right ) \\ \end{align*} Which simplifies to \[ y = {\mathrm e}^{-i x} c_{4} +{\mathrm e}^{i x} c_{3} +{\mathrm e}^{x} \left (x c_{2} +c_{1} \right )+1 \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-i x} c_{4} +{\mathrm e}^{i x} c_{3} +{\mathrm e}^{x} \left (x c_{2} +c_{1} \right )+1 \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{-i x} c_{4} +{\mathrm e}^{i x} c_{3} +{\mathrm e}^{x} \left (x c_{2} +c_{1} \right )+1 \] Verified OK.

16.44.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y=1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & y^{\prime \prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=y^{\prime \prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{4}\left (x \right ) \\ {} & {} & y_{4}\left (x \right )=y^{\prime \prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{4}^{\prime }\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{4}^{\prime }\left (x \right )=1+2 y_{4}\left (x \right )-2 y_{3}\left (x \right )+2 y_{2}\left (x \right )-y_{1}\left (x \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=y_{1}^{\prime }\left (x \right ), y_{3}\left (x \right )=y_{2}^{\prime }\left (x \right ), y_{4}\left (x \right )=y_{3}^{\prime }\left (x \right ), y_{4}^{\prime }\left (x \right )=1+2 y_{4}\left (x \right )-2 y_{3}\left (x \right )+2 y_{2}\left (x \right )-y_{1}\left (x \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \\ y_{4}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 2 & -2 & 2 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right )+\left [\begin {array}{c} 0 \\ 0 \\ 0 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Define the forcing function}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{f}}\left (x \right )=\left [\begin {array}{c} 0 \\ 0 \\ 0 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 2 & -2 & 2 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right )+{\moverset {\rightarrow }{f}} \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]\right ], \left [1, \left [\begin {array}{c} 0 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ], \left [\mathrm {-I}, \left [\begin {array}{c} \mathrm {-I} \\ -1 \\ \mathrm {I} \\ 1 \end {array}\right ]\right ], \left [\mathrm {I}, \left [\begin {array}{c} \mathrm {I} \\ -1 \\ \mathrm {-I} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair, with eigenvalue of algebraic multiplicity 2}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {First solution from eigenvalue}\hspace {3pt} 1 \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}\left (x \right )={\mathrm e}^{x}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Form of the 2nd homogeneous solution where}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {is to be solved for,}\hspace {3pt} \lambda =1\hspace {3pt}\textrm {is the eigenvalue, and}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {is the eigenvector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}\left (x \right )={\mathrm e}^{\lambda x} \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Note that the}\hspace {3pt} x \hspace {3pt}\textrm {multiplying}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {makes this solution linearly independent to the 1st solution obtained from}\hspace {3pt} \lambda =1 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} {\moverset {\rightarrow }{y}}_{2}\left (x \right )\hspace {3pt}\textrm {into the homogeneous system}\hspace {3pt} \\ {} & {} & \lambda \,{\mathrm e}^{\lambda x} \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right )+{\mathrm e}^{\lambda x} {\moverset {\rightarrow }{v}}=\left ({\mathrm e}^{\lambda x} A \right )\cdot \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Use the fact that}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {is an eigenvector of}\hspace {3pt} A \\ {} & {} & \lambda \,{\mathrm e}^{\lambda x} \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right )+{\mathrm e}^{\lambda x} {\moverset {\rightarrow }{v}}={\mathrm e}^{\lambda x} \left (\lambda x {\moverset {\rightarrow }{v}}+A \cdot {\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Simplify equation}\hspace {3pt} \\ {} & {} & \lambda {\moverset {\rightarrow }{p}}+{\moverset {\rightarrow }{v}}=A \cdot {\moverset {\rightarrow }{p}} \\ \bullet & {} & \textrm {Make use of the identity matrix}\hspace {3pt} \mathrm {I} \\ {} & {} & \left (\lambda \cdot I \right )\cdot {\moverset {\rightarrow }{p}}+{\moverset {\rightarrow }{v}}=A \cdot {\moverset {\rightarrow }{p}} \\ \bullet & {} & \textrm {Condition}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {must meet for}\hspace {3pt} {\moverset {\rightarrow }{y}}_{2}\left (x \right )\hspace {3pt}\textrm {to be a solution to the homogeneous system}\hspace {3pt} \\ {} & {} & \left (A -\lambda \cdot I \right )\cdot {\moverset {\rightarrow }{p}}={\moverset {\rightarrow }{v}} \\ \bullet & {} & \textrm {Choose}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {to use in the second solution to the homogeneous system from eigenvalue}\hspace {3pt} 1 \\ {} & {} & \left (\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 2 & -2 & 2 \end {array}\right ]-1\cdot \left [\begin {array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end {array}\right ]\right )\cdot {\moverset {\rightarrow }{p}}=\left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Choice of}\hspace {3pt} {\moverset {\rightarrow }{p}} \\ {} & {} & {\moverset {\rightarrow }{p}}=\left [\begin {array}{c} -1 \\ 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Second solution from eigenvalue}\hspace {3pt} 1 \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}\left (x \right )={\mathrm e}^{x}\cdot \left (x \cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]+\left [\begin {array}{c} -1 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ) \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [\mathrm {-I}, \left [\begin {array}{c} \mathrm {-I} \\ -1 \\ \mathrm {I} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\mathrm {-I} x}\cdot \left [\begin {array}{c} \mathrm {-I} \\ -1 \\ \mathrm {I} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & \left (\cos \left (x \right )-\mathrm {I} \sin \left (x \right )\right )\cdot \left [\begin {array}{c} \mathrm {-I} \\ -1 \\ \mathrm {I} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} \mathrm {-I} \left (\cos \left (x \right )-\mathrm {I} \sin \left (x \right )\right ) \\ -\cos \left (x \right )+\mathrm {I} \sin \left (x \right ) \\ \mathrm {I} \left (\cos \left (x \right )-\mathrm {I} \sin \left (x \right )\right ) \\ \cos \left (x \right )-\mathrm {I} \sin \left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{3}\left (x \right )=\left [\begin {array}{c} -\sin \left (x \right ) \\ -\cos \left (x \right ) \\ \sin \left (x \right ) \\ \cos \left (x \right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{4}\left (x \right )=\left [\begin {array}{c} -\cos \left (x \right ) \\ \sin \left (x \right ) \\ \cos \left (x \right ) \\ -\sin \left (x \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution of the system of ODEs can be written in terms of the particular solution}\hspace {3pt} {\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=c_{1} {\moverset {\rightarrow }{y}}_{1}\left (x \right )+c_{2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+c_{3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+c_{4} {\moverset {\rightarrow }{y}}_{4}\left (x \right )+{\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ \square & {} & \textrm {Fundamental matrix}\hspace {3pt} \\ {} & \circ & \textrm {Let}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {be the matrix whose columns are the independent solutions of the homogeneous system.}\hspace {3pt} \\ {} & {} & \phi \left (x \right )=\left [\begin {array}{cccc} {\mathrm e}^{x} & \left (x -1\right ) {\mathrm e}^{x} & -\sin \left (x \right ) & -\cos \left (x \right ) \\ {\mathrm e}^{x} & {\mathrm e}^{x} x & -\cos \left (x \right ) & \sin \left (x \right ) \\ {\mathrm e}^{x} & {\mathrm e}^{x} x & \sin \left (x \right ) & \cos \left (x \right ) \\ {\mathrm e}^{x} & {\mathrm e}^{x} x & \cos \left (x \right ) & -\sin \left (x \right ) \end {array}\right ] \\ {} & \circ & \textrm {The fundamental matrix,}\hspace {3pt} \Phi \left (x \right )\hspace {3pt}\textrm {is a normalized version of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {satisfying}\hspace {3pt} \Phi \left (0\right )=I \hspace {3pt}\textrm {where}\hspace {3pt} I \hspace {3pt}\textrm {is the identity matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\phi \left (x \right )\cdot \frac {1}{\phi \left (0\right )} \\ {} & \circ & \textrm {Substitute the value of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {and}\hspace {3pt} \phi \left (0\right ) \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{cccc} {\mathrm e}^{x} & \left (x -1\right ) {\mathrm e}^{x} & -\sin \left (x \right ) & -\cos \left (x \right ) \\ {\mathrm e}^{x} & {\mathrm e}^{x} x & -\cos \left (x \right ) & \sin \left (x \right ) \\ {\mathrm e}^{x} & {\mathrm e}^{x} x & \sin \left (x \right ) & \cos \left (x \right ) \\ {\mathrm e}^{x} & {\mathrm e}^{x} x & \cos \left (x \right ) & -\sin \left (x \right ) \end {array}\right ]\cdot \frac {1}{\left [\begin {array}{cccc} 1 & -1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end {array}\right ]} \\ {} & \circ & \textrm {Evaluate and simplify to get the fundamental matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{cccc} -\left (x -1\right ) {\mathrm e}^{x} & {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} & -{\mathrm e}^{x} x +{\mathrm e}^{x}-\cos \left (x \right ) & {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ -{\mathrm e}^{x} x & \frac {{\mathrm e}^{x}}{2}+{\mathrm e}^{x} x +\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} & -{\mathrm e}^{x} x +\sin \left (x \right ) & \frac {{\mathrm e}^{x}}{2}+{\mathrm e}^{x} x -\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ -{\mathrm e}^{x} x & \frac {{\mathrm e}^{x}}{2}+{\mathrm e}^{x} x -\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} & -{\mathrm e}^{x} x +\cos \left (x \right ) & \frac {{\mathrm e}^{x}}{2}+{\mathrm e}^{x} x +\frac {\sin \left (x \right )}{2}-\frac {\cos \left (x \right )}{2} \\ -{\mathrm e}^{x} x & \frac {{\mathrm e}^{x}}{2}+{\mathrm e}^{x} x +\frac {\sin \left (x \right )}{2}-\frac {\cos \left (x \right )}{2} & -{\mathrm e}^{x} x -\sin \left (x \right ) & \frac {{\mathrm e}^{x}}{2}+{\mathrm e}^{x} x +\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} \end {array}\right ] \\ \square & {} & \textrm {Find a particular solution of the system of ODEs using variation of parameters}\hspace {3pt} \\ {} & \circ & \textrm {Let the particular solution be the fundamental matrix multiplied by}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {and solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & \circ & \textrm {Take the derivative of the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}^{\prime }\left (x \right )=\Phi ^{\prime }\left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Substitute particular solution and its derivative into the system of ODEs}\hspace {3pt} \\ {} & {} & \Phi ^{\prime }\left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system}\hspace {3pt} \\ {} & {} & A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Cancel like terms}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )={\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Multiply by the inverse of the fundamental matrix}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=\frac {1}{\Phi \left (x \right )}\cdot {\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Integrate to solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{v}}\left (x \right )=\int _{0}^{x}\frac {1}{\Phi \left (s \right )}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \\ {} & \circ & \textrm {Plug}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {into the equation for the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot \left (\int _{0}^{x}\frac {1}{\Phi \left (s \right )}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \right ) \\ {} & \circ & \textrm {Plug in the fundamental matrix and the forcing function and compute}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\left [\begin {array}{c} {\mathrm e}^{x} x -\frac {3 \,{\mathrm e}^{x}}{2}+1+\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} \\ {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+1-\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+1-\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} \end {array}\right ] \\ \bullet & {} & \textrm {Plug particular solution back into general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=c_{1} {\moverset {\rightarrow }{y}}_{1}\left (x \right )+c_{2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+c_{3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+c_{4} {\moverset {\rightarrow }{y}}_{4}\left (x \right )+\left [\begin {array}{c} {\mathrm e}^{x} x -\frac {3 \,{\mathrm e}^{x}}{2}+1+\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} \\ {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+1-\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ {\mathrm e}^{x} x -\frac {{\mathrm e}^{x}}{2}+1-\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y=\frac {\left (\left (2 x -2\right ) c_{2} +2 x +2 c_{1} -3\right ) {\mathrm e}^{x}}{2}+\frac {\left (-2 c_{4} +1\right ) \cos \left (x \right )}{2}+1+\frac {\left (-2 c_{3} +1\right ) \sin \left (x \right )}{2} \end {array} \]

Maple trace

`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 4; linear nonhomogeneous with symmetry [0,1] 
trying high order linear exact nonhomogeneous 
trying differential order: 4; missing the dependent variable 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x$4)-2*diff(y(x),x$3)+2*diff(y(x),x$2)-2*diff(y(x),x)+y(x)=1,y(x), singsol=all)
 

\[ y \left (x \right ) = \left (c_{4} x +c_{2} \right ) {\mathrm e}^{x}+\cos \left (x \right ) c_{1} +c_{3} \sin \left (x \right )+1 \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y''''[x]-2*y'''[x]+2*y''[x]-2*y'[x]+y[x]==1,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_3 e^x+c_4 e^x x+c_1 \cos (x)+c_2 \sin (x)+1 \]