3.286 problem 1291

3.286.1 Maple step by step solution

Internal problem ID [9619]
Internal file name [OUTPUT/8560_Monday_June_06_2022_03_51_36_AM_49944266/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1291.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[_Jacobi]

Unable to solve or complete the solution.

\[ \boxed {48 x \left (x -1\right ) y^{\prime \prime }+\left (152 x -40\right ) y^{\prime }+53 y=0} \]

3.286.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (48 x^{2}-48 x \right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (152 x -40\right ) y^{\prime }+53 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {53 y}{48 x \left (x -1\right )}-\frac {\left (19 x -5\right ) y^{\prime }}{6 x \left (x -1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {\left (19 x -5\right ) y^{\prime }}{6 x \left (x -1\right )}+\frac {53 y}{48 x \left (x -1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {19 x -5}{6 x \left (x -1\right )}, P_{3}\left (x \right )=\frac {53}{48 x \left (x -1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {5}{6} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 48 x \left (x -1\right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (152 x -40\right ) y^{\prime }+53 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -8 a_{0} r \left (-1+6 r \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (-8 a_{k +1} \left (k +1+r \right ) \left (6 k +5+6 r \right )+a_{k} \left (48 k^{2}+96 k r +48 r^{2}+104 k +104 r +53\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -8 r \left (-1+6 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {1}{6}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -48 \left (k +\frac {5}{6}+r \right ) \left (k +1+r \right ) a_{k +1}+48 \left (k^{2}+\left (2 r +\frac {13}{6}\right ) k +r^{2}+\frac {13 r}{6}+\frac {53}{48}\right ) a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {\left (48 k^{2}+96 k r +48 r^{2}+104 k +104 r +53\right ) a_{k}}{8 \left (6 k +5+6 r \right ) \left (k +1+r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {\left (48 k^{2}+104 k +53\right ) a_{k}}{8 \left (6 k +5\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=\frac {\left (48 k^{2}+104 k +53\right ) a_{k}}{8 \left (6 k +5\right ) \left (k +1\right )}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{6} \\ {} & {} & a_{k +1}=\frac {\left (48 k^{2}+120 k +\frac {215}{3}\right ) a_{k}}{8 \left (6 k +6\right ) \left (k +\frac {7}{6}\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{6} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{6}}, a_{k +1}=\frac {\left (48 k^{2}+120 k +\frac {215}{3}\right ) a_{k}}{8 \left (6 k +6\right ) \left (k +\frac {7}{6}\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {1}{6}}\right ), a_{k +1}=\frac {\left (48 k^{2}+104 k +53\right ) a_{k}}{8 \left (6 k +5\right ) \left (k +1\right )}, b_{k +1}=\frac {\left (48 k^{2}+120 k +\frac {215}{3}\right ) b_{k}}{8 \left (6 k +6\right ) \left (k +\frac {7}{6}\right )}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
   -> hypergeometric 
      -> heuristic approach 
      <- heuristic approach successful 
   <- hypergeometric successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.156 (sec). Leaf size: 50

dsolve(48*x*(x-1)*diff(diff(y(x),x),x)+(152*x-40)*diff(y(x),x)+53*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} \operatorname {hypergeom}\left (\left [\frac {13}{12}-\frac {\sqrt {10}}{12}, \frac {13}{12}+\frac {\sqrt {10}}{12}\right ], \left [\frac {5}{6}\right ], x\right )+c_{2} x^{\frac {1}{6}} \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {\sqrt {10}}{12}, \frac {5}{4}+\frac {\sqrt {10}}{12}\right ], \left [\frac {7}{6}\right ], x\right ) \]

Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 82

DSolve[53*y[x] + (-40 + 152*x)*y'[x] + 48*(-1 + x)*x*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \sqrt [6]{-1} c_2 \sqrt [6]{x} \operatorname {Hypergeometric2F1}\left (\frac {5}{4}-\frac {\sqrt {\frac {5}{2}}}{6},\frac {1}{12} \left (15+\sqrt {10}\right ),\frac {7}{6},x\right )+c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{12} \left (13-\sqrt {10}\right ),\frac {1}{12} \left (13+\sqrt {10}\right ),\frac {5}{6},x\right ) \]