3.287 problem 1292

3.287.1 Solving as second order change of variable on x method 2 ode
3.287.2 Solving as second order change of variable on x method 1 ode
3.287.3 Solving using Kovacic algorithm
3.287.4 Maple step by step solution

Internal problem ID [9620]
Internal file name [OUTPUT/8561_Monday_June_06_2022_03_51_56_AM_62525796/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1292.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_variable_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type

[_Jacobi, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\[ \boxed {50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y=0} \]

3.287.1 Solving as second order change of variable on x method 2 ode

In normal form the ode \begin {align*} \left (50 x^{2}-50 x \right ) y^{\prime \prime }+\left (50 x -25\right ) y^{\prime }-2 y&=0 \tag {1} \end {align*}

Becomes \begin {align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end {align*}

Where \begin {align*} p \left (x \right )&=\frac {50 x -25}{50 x^{2}-50 x}\\ q \left (x \right )&=-\frac {2}{50 x^{2}-50 x} \end {align*}

Applying change of variables \(\tau = g \left (x \right )\) to (2) gives \begin {align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end {align*}

Where \(\tau \) is the new independent variable, and \begin {align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end {align*}

Let \(p_{1} = 0\). Eq (4) simplifies to \begin {align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end {align*}

This ode is solved resulting in \begin {align*} \tau &= \int {\mathrm e}^{-\left (\int p \left (x \right )d x \right )}d x\\ &= \int {\mathrm e}^{-\left (\int \frac {50 x -25}{50 x^{2}-50 x}d x \right )}d x\\ &= \int e^{-\frac {\ln \left (x \left (x -1\right )\right )}{2}} \,dx\\ &= \int \frac {1}{\sqrt {x \left (x -1\right )}}d x\\ &= \ln \left (-\frac {1}{2}+x +\sqrt {x^{2}-x}\right )\tag {6} \end {align*}

Using (6) to evaluate \(q_{1}\) from (5) gives \begin {align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {-\frac {2}{50 x^{2}-50 x}}{\frac {1}{x \left (x -1\right )}}\\ &= -{\frac {1}{25}}\tag {7} \end {align*}

Substituting the above in (3) and noting that now \(p_{1} = 0\) results in \begin {align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )-\frac {y \left (\tau \right )}{25}&=0 \end {align*}

The above ode is now solved for \(y \left (\tau \right )\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is \[ A y''(\tau ) + B y'(\tau ) + C y(\tau ) = 0 \] Where in the above \(A=1, B=0, C=-{\frac {1}{25}}\). Let the solution be \(y \left (\tau \right )=e^{\lambda \tau }\). Substituting this into the ODE gives \[ \lambda ^{2} {\mathrm e}^{\lambda \tau }-\frac {{\mathrm e}^{\lambda \tau }}{25} = 0 \tag {1} \] Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda \tau }\) gives \[ \lambda ^{2}-\frac {1}{25} = 0 \tag {2} \] Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula \[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \] Substituting \(A=1, B=0, C=-{\frac {1}{25}}\) into the above gives \begin {align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (-{\frac {1}{25}}\right )}\\ &= \pm {\frac {1}{5}} \end {align*}

Hence \begin{align*} \lambda _1 &= + {\frac {1}{5}} \\ \lambda _2 &= - {\frac {1}{5}} \\ \end{align*} Which simplifies to \begin{align*} \lambda _1 &= {\frac {1}{5}} \\ \lambda _2 &= -{\frac {1}{5}} \\ \end{align*} Since roots are real and distinct, then the solution is \begin{align*} y \left (\tau \right ) &= c_{1} e^{\lambda _1 \tau } + c_{2} e^{\lambda _2 \tau } \\ y \left (\tau \right ) &= c_{1} e^{\left ({\frac {1}{5}}\right )\tau } +c_{2} e^{\left (-{\frac {1}{5}}\right )\tau } \\ \end{align*} Or \[ y \left (\tau \right ) =c_{1} {\mathrm e}^{\frac {\tau }{5}}+c_{2} {\mathrm e}^{-\frac {\tau }{5}} \] The above solution is now transformed back to \(y\) using (6) which results in \begin {align*} y &= \frac {c_{1} \left (-16+32 x +32 \sqrt {x \left (x -1\right )}\right )^{\frac {2}{5}}+4 c_{2}}{2 \left (-16+32 x +32 \sqrt {x \left (x -1\right )}\right )^{\frac {1}{5}}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1} \left (-16+32 x +32 \sqrt {x \left (x -1\right )}\right )^{\frac {2}{5}}+4 c_{2}}{2 \left (-16+32 x +32 \sqrt {x \left (x -1\right )}\right )^{\frac {1}{5}}} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1} \left (-16+32 x +32 \sqrt {x \left (x -1\right )}\right )^{\frac {2}{5}}+4 c_{2}}{2 \left (-16+32 x +32 \sqrt {x \left (x -1\right )}\right )^{\frac {1}{5}}} \] Verified OK.

3.287.2 Solving as second order change of variable on x method 1 ode

In normal form the ode \begin {align*} \left (50 x^{2}-50 x \right ) y^{\prime \prime }+\left (50 x -25\right ) y^{\prime }-2 y&=0 \tag {1} \end {align*}

Becomes \begin {align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end {align*}

Where \begin {align*} p \left (x \right )&=\frac {2 x -1}{2 x \left (x -1\right )}\\ q \left (x \right )&=-\frac {1}{25 x \left (x -1\right )} \end {align*}

Applying change of variables \(\tau = g \left (x \right )\) to (2) results \begin {align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end {align*}

Where \(\tau \) is the new independent variable, and \begin {align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end {align*}

Let \(q_1=c^2\) where \(c\) is some constant. Therefore from (5) \begin {align*} \tau ' &= \frac {1}{c}\sqrt {q}\\ &= \frac {\sqrt {-\frac {1}{x \left (x -1\right )}}}{5 c}\tag {6} \\ \tau '' &= \frac {\frac {1}{x^{2} \left (x -1\right )}+\frac {1}{x \left (x -1\right )^{2}}}{10 c \sqrt {-\frac {1}{x \left (x -1\right )}}} \end {align*}

Substituting the above into (4) results in \begin {align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &=\frac {\frac {\frac {1}{x^{2} \left (x -1\right )}+\frac {1}{x \left (x -1\right )^{2}}}{10 c \sqrt {-\frac {1}{x \left (x -1\right )}}}+\frac {2 x -1}{2 x \left (x -1\right )}\frac {\sqrt {-\frac {1}{x \left (x -1\right )}}}{5 c}}{\left (\frac {\sqrt {-\frac {1}{x \left (x -1\right )}}}{5 c}\right )^2} \\ &=0 \end {align*}

Therefore ode (3) now becomes \begin {align*} y \left (\tau \right )'' + p_1 y \left (\tau \right )' + q_1 y \left (\tau \right ) &= 0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+c^{2} y \left (\tau \right ) &= 0 \tag {7} \end {align*}

The above ode is now solved for \(y \left (\tau \right )\). Since the ode is now constant coefficients, it can be easily solved to give \begin {align*} y \left (\tau \right ) &= c_{1} \cos \left (c \tau \right )+c_{2} \sin \left (c \tau \right ) \end {align*}

Now from (6) \begin {align*} \tau &= \int \frac {1}{c} \sqrt q \,dx \\ &= \frac {\int \frac {\sqrt {-\frac {1}{x \left (x -1\right )}}}{5}d x}{c}\\ &= \frac {\sqrt {-\frac {1}{x \left (x -1\right )}}\, x \left (x -1\right ) \ln \left (-\frac {1}{2}+x +\sqrt {x^{2}-x}\right )}{5 c \sqrt {x \left (x -1\right )}} \end {align*}

Substituting the above into the solution obtained gives \[ y = c_{1} \cos \left (\frac {\sqrt {1-x}\, \left (-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x}\, \sqrt {x -1}\right )\right )}{5 \sqrt {x -1}}\right )+c_{2} \sin \left (\frac {\sqrt {1-x}\, \left (-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x}\, \sqrt {x -1}\right )\right )}{5 \sqrt {x -1}}\right ) \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \cos \left (\frac {\sqrt {1-x}\, \left (-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x}\, \sqrt {x -1}\right )\right )}{5 \sqrt {x -1}}\right )+c_{2} \sin \left (\frac {\sqrt {1-x}\, \left (-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x}\, \sqrt {x -1}\right )\right )}{5 \sqrt {x -1}}\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \cos \left (\frac {\sqrt {1-x}\, \left (-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x}\, \sqrt {x -1}\right )\right )}{5 \sqrt {x -1}}\right )+c_{2} \sin \left (\frac {\sqrt {1-x}\, \left (-\ln \left (2\right )+\ln \left (-1+2 x +2 \sqrt {x}\, \sqrt {x -1}\right )\right )}{5 \sqrt {x -1}}\right ) \] Verified OK.

3.287.3 Solving using Kovacic algorithm

Writing the ode as \begin {align*} \left (50 x^{2}-50 x \right ) y^{\prime \prime }+\left (50 x -25\right ) y^{\prime }-2 y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end {align*}

Comparing (1) and (2) shows that \begin {align*} A &= 50 x^{2}-50 x \\ B &= 50 x -25\tag {3} \\ C &= -2 \end {align*}

Applying the Liouville transformation on the dependent variable gives \begin {align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end {align*}

Then (2) becomes \begin {align*} z''(x) = r z(x)\tag {4} \end {align*}

Where \(r\) is given by \begin {align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end {align*}

Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives \begin {align*} r &= \frac {-84 x^{2}+84 x -75}{400 \left (x^{2}-x \right )^{2}}\tag {6} \end {align*}

Comparing the above to (5) shows that \begin {align*} s &= -84 x^{2}+84 x -75\\ t &= 400 \left (x^{2}-x \right )^{2} \end {align*}

Therefore eq. (4) becomes \begin {align*} z''(x) &= \left ( \frac {-84 x^{2}+84 x -75}{400 \left (x^{2}-x \right )^{2}}\right ) z(x)\tag {7} \end {align*}

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation \begin {align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end {align*}

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these cases.

Case

Allowed pole order for \(r\)

Allowed value for \(\mathcal {O}(\infty )\)

1

\(\left \{ 0,1,2,4,6,8,\cdots \right \} \)

\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \)

2

Need to have at least one pole that is either order \(2\) or odd order greater than \(2\). Any other pole order is allowed as long as the above condition is satisfied. Hence the following set of pole orders are all allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).

no condition

3

\(\left \{ 1,2\right \} \)

\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)

Table 355: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore \begin {align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 4 - 2 \\ &= 2 \end {align*}

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=400 \left (x^{2}-x \right )^{2}\). There is a pole at \(x=0\) of order \(2\). There is a pole at \(x=1\) of order \(2\). Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case one are met. Since there is a pole of order \(2\) then necessary conditions for case two are met. Since pole order is not larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case three are met. Therefore \begin {align*} L &= [1, 2, 4, 6, 12] \end {align*}

Attempting to find a solution using case \(n=1\).

Unable to find solution using case one

Attempting to find a solution using case \(n=2\).

Looking at poles of order 2. The partial fractions decomposition of \(r\) is \[ r = -\frac {3}{16 \left (x -1\right )^{2}}-\frac {3}{16 x^{2}}-\frac {33}{200 x}+\frac {33}{200 \left (x -1\right )} \] For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac {1}{ x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-{\frac {3}{16}}\). Hence \begin {align*} E_c &= \{2, 2+2\sqrt {1+4 b}, 2-2\sqrt {1+4 b} \} \\ &= \{1, 2, 3\} \end {align*}

For the pole at \(x=1\) let \(b\) be the coefficient of \(\frac {1}{ \left (x -1\right )^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-{\frac {3}{16}}\). Hence \begin {align*} E_c &= \{2, 2+2\sqrt {1+4 b}, 2-2\sqrt {1+4 b} \} \\ &= \{1, 2, 3\} \end {align*}

Since the order of \(r\) at \(\infty \) is 2 then let \(b\) be the coefficient of \(\frac {1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty \). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from \begin {alignat*} {2} r &= \frac {s}{t} &&= \frac {-84 x^{2}+84 x -75}{400 \left (x^{2}-x \right )^{2}} \end {alignat*}

Since the \(\text {gcd}(s,t)=1\). This gives \(b=-{\frac {21}{100}}\). Hence \begin {align*} E_\infty &= \{2, 2+2\sqrt {1+4 b}, 2-2\sqrt {1+4 b} \} \\ &= \{2\} \end {align*}

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) for case 2 of Kovacic algorithm.

pole \(c\) location pole order \(E_c\)
\(0\) \(2\) \(\{1, 2, 3\}\)
\(1\) \(2\) \(\{1, 2, 3\}\)

Order of \(r\) at \(\infty \) \(E_\infty \)
\(2\) \(\{2\}\)

Using the family \(\{e_1,e_2,\dots ,e_\infty \}\) given by \[ e_1=1,\hspace {3pt} e_2=1,\hspace {3pt} e_\infty =2 \] Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using \begin {align*} d &= \frac {1}{2} \left ( e_\infty - \sum _{c \in \Gamma } e_c \right )\\ &= \frac {1}{2} \left ( 2 - \left (1+\left (1\right )\right )\right )\\ &= 0 \end {align*}

We now form the following rational function \begin {align*} \theta &= \frac {1}{2} \sum _{c \in \Gamma } \frac {e_c}{x-c} \\ &= \frac {1}{2} \left (\frac {1}{\left (x-\left (0\right )\right )}+\frac {1}{\left (x-\left (1\right )\right )}\right ) \\ &= \frac {1}{2 x}+\frac {1}{2 x -2} \end {align*}

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that \[ p'''+3 \theta p'' + \left (3 \theta ^2 + 3 \theta ' - 4 r\right )p' + \left (\theta '' + 3 \theta \theta ' + \theta ^3 - 4 r \theta - 2 r' \right ) p = 0 \tag {1A} \] Since \(d=0\), then letting \[ p = 1\tag {2A} \] Substituting \(p\) and \(\theta \) into Eq. (1A) gives \[ 0 = 0 \] And solving for \(p\) gives \[ p = 1 \] Now that \(p(x)\) is found let \begin {align*} \phi &= \theta + \frac {p'}{p}\\ &= \frac {1}{2 x}+\frac {1}{2 x -2} \end {align*}

Let \(\omega \) be the solution of \begin {align*} \omega ^2 - \phi \omega + \left ( \frac {1}{2} \phi ' + \frac {1}{2} \phi ^2 - r \right ) &= 0 \end {align*}

Substituting the values for \(\phi \) and \(r\) into the above equation gives \[ w^{2}-\left (\frac {1}{2 x}+\frac {1}{2 x -2}\right ) w +\frac {84 x^{2}-84 x +25}{400 x^{2} \left (x -1\right )^{2}} = 0 \] Solving for \(\omega \) gives \begin {align*} \omega &= \frac {10 x -5+4 \sqrt {x \left (x -1\right )}}{20 x \left (x -1\right )} \end {align*}

Therefore the first solution to the ode \(z'' = r z\) is \begin {align*} z_1(x) &= e^{ \int \omega \,dx} \\ &= {\mathrm e}^{\int \frac {10 x -5+4 \sqrt {x \left (x -1\right )}}{20 x \left (x -1\right )}d x}\\ &= x^{\frac {1}{4}} \left (1-x \right )^{\frac {1}{4}} {\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \end {align*}

The first solution to the original ode in \(y\) is found from \begin{align*} y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\ &= z_1 e^{ -\int \frac {1}{2} \frac {50 x -25}{50 x^{2}-50 x} \,dx} \\ &= z_1 e^{-\frac {\ln \left (x \left (x -1\right )\right )}{4}} \\ &= z_1 \left (\frac {1}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}}\right ) \\ \end{align*} Which simplifies to \[ y_1 = \frac {{\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}}}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}} \] The second solution \(y_2\) to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \] Substituting gives \begin{align*} y_2 &= y_1 \int \frac { e^{\int -\frac {50 x -25}{50 x^{2}-50 x} \,dx}}{\left (y_1\right )^2} \,dx \\ &= y_1 \int \frac { e^{-\frac {\ln \left (x \left (x -1\right )\right )}{2}}}{\left (y_1\right )^2} \,dx \\ &= y_1 \left (\int -\frac {i {\mathrm e}^{\frac {4 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{5 \sqrt {-\operatorname {signum}\left (x -1\right )}}}}{\sqrt {-x \left (x -1\right )}}d x\right ) \\ \end{align*} Therefore the solution is

\begin{align*} y &= c_{1} y_1 + c_{2} y_2 \\ &= c_{1} \left (\frac {{\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}}}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}}\right ) + c_{2} \left (\frac {{\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}}}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}}\left (\int -\frac {i {\mathrm e}^{\frac {4 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{5 \sqrt {-\operatorname {signum}\left (x -1\right )}}}}{\sqrt {-x \left (x -1\right )}}d x\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1} {\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}}}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}}-\frac {i c_{2} {\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}} \left (\int \frac {{\mathrm e}^{\frac {4 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{5 \sqrt {-\operatorname {signum}\left (x -1\right )}}}}{\sqrt {-x \left (x -1\right )}}d x \right )}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1} {\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}}}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}}-\frac {i c_{2} {\mathrm e}^{\frac {5 i \pi \sqrt {-\operatorname {signum}\left (x -1\right )}-8 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{20 \sqrt {-\operatorname {signum}\left (x -1\right )}}} \left (-x \left (x -1\right )\right )^{\frac {1}{4}} \left (\int \frac {{\mathrm e}^{\frac {4 \sqrt {\operatorname {signum}\left (x -1\right )}\, \arcsin \left (\sqrt {x}\right )}{5 \sqrt {-\operatorname {signum}\left (x -1\right )}}}}{\sqrt {-x \left (x -1\right )}}d x \right )}{\left (x \left (x -1\right )\right )^{\frac {1}{4}}} \] Verified OK.

3.287.4 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (50 x^{2}-50 x \right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (50 x -25\right ) y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {y}{25 x \left (x -1\right )}-\frac {\left (2 x -1\right ) y^{\prime }}{2 x \left (x -1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {\left (2 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {y}{25 x \left (x -1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {2 x -1}{2 x \left (x -1\right )}, P_{3}\left (x \right )=-\frac {1}{25 x \left (x -1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{2} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 50 x \left (x -1\right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (50 x -25\right ) y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -25 a_{0} r \left (-1+2 r \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (-25 a_{k +1} \left (k +1+r \right ) \left (2 k +1+2 r \right )+2 a_{k} \left (5 k +5 r +1\right ) \left (5 k +5 r -1\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -25 r \left (-1+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {1}{2}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -50 \left (k +\frac {1}{2}+r \right ) \left (k +1+r \right ) a_{k +1}+50 a_{k} \left (k +r +\frac {1}{5}\right ) \left (k +r -\frac {1}{5}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {2 a_{k} \left (5 k +5 r +1\right ) \left (5 k +5 r -1\right )}{25 \left (2 k +1+2 r \right ) \left (k +1+r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {2 a_{k} \left (5 k +1\right ) \left (5 k -1\right )}{25 \left (2 k +1\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=\frac {2 a_{k} \left (5 k +1\right ) \left (5 k -1\right )}{25 \left (2 k +1\right ) \left (k +1\right )}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & a_{k +1}=\frac {2 a_{k} \left (5 k +\frac {7}{2}\right ) \left (5 k +\frac {3}{2}\right )}{25 \left (2 k +2\right ) \left (k +\frac {3}{2}\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{2}}, a_{k +1}=\frac {2 a_{k} \left (5 k +\frac {7}{2}\right ) \left (5 k +\frac {3}{2}\right )}{25 \left (2 k +2\right ) \left (k +\frac {3}{2}\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {1}{2}}\right ), a_{k +1}=\frac {2 a_{k} \left (5 k +1\right ) \left (5 k -1\right )}{25 \left (2 k +1\right ) \left (k +1\right )}, b_{k +1}=\frac {2 b_{k} \left (5 k +\frac {7}{2}\right ) \left (5 k +\frac {3}{2}\right )}{25 \left (2 k +2\right ) \left (k +\frac {3}{2}\right )}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
   Solution is available but has compositions of trig with ln functions of radicals. Attempting a simpler solution 
   -> Trying a Liouvillian solution using Kovacics algorithm 
      A Liouvillian solution exists 
      Group is reducible or imprimitive 
   <- Kovacics algorithm successful 
<- linear_1 successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(50*x*(x-1)*diff(diff(y(x),x),x)+25*(2*x-1)*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)
                                                                                    
                                                                                    
 

\[ y \left (x \right ) = \frac {c_{1} \left (\sqrt {x}+\sqrt {x -1}\right )^{\frac {4}{5}}+c_{2}}{\left (\sqrt {x}+\sqrt {x -1}\right )^{\frac {2}{5}}} \]

Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 57

DSolve[-2*y[x] + 25*(-1 + 2*x)*y'[x] + 50*(-1 + x)*x*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 \cosh \left (\frac {2}{5} \log \left (\sqrt {x-1}-\sqrt {x}\right )\right )-i c_2 \sinh \left (\frac {2}{5} \log \left (\sqrt {x-1}-\sqrt {x}\right )\right ) \]