4.7 problem 1455

4.7.1 Maple step by step solution

Internal problem ID [9781]
Internal file name [OUTPUT/8724_Monday_June_06_2022_05_20_27_AM_78544051/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 3, linear third order
Problem number: 1455.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a=0} \] Unable to solve this ODE.

4.7.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }-x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (a +b -1\right ) x y^{\prime }-b y a =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} k \,x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} k \left (k -1\right ) x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }=\moverset {\infty }{\munderset {k =3}{\sum }}a_{k} k \left (k -1\right ) \left (k -2\right ) x^{k -3} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & {} & \moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right )-a_{k} \left (b -k \right ) \left (a -k \right )\right ) x^{k}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right )-a_{k} \left (b -k \right ) \left (a -k \right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +3}=\frac {a_{k} \left (b -k \right ) \left (a -k \right )}{\left (k +3\right ) \left (k +2\right ) \left (k +1\right )}\right ] \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying high order exact linear fully integrable 
trying to convert to a linear ODE with constant coefficients 
trying differential order: 3; missing the dependent variable 
trying Louvillian solutions for 3rd order ODEs, imprimitive case 
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius 
<- pFq successful: received ODE is equivalent to the  2F2  ODE, case  c = 0 `
 

Solution by Maple

Time used: 0.125 (sec). Leaf size: 71

dsolve(diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+(a+b-1)*x*diff(y(x),x)-b*y(x)*a=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} \operatorname {hypergeom}\left (\left [-\frac {a}{3}, -\frac {b}{3}\right ], \left [\frac {1}{3}, \frac {2}{3}\right ], \frac {x^{3}}{3}\right )+c_{2} \operatorname {hypergeom}\left (\left [\frac {1}{3}-\frac {a}{3}, \frac {1}{3}-\frac {b}{3}\right ], \left [\frac {2}{3}, \frac {4}{3}\right ], \frac {x^{3}}{3}\right ) x +c_{3} \operatorname {hypergeom}\left (\left [-\frac {a}{3}+\frac {2}{3}, -\frac {b}{3}+\frac {2}{3}\right ], \left [\frac {4}{3}, \frac {5}{3}\right ], \frac {x^{3}}{3}\right ) x^{2} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 127

DSolve[-(a*b*y[x]) + (-1 + a + b)*x*y'[x] - x^2*y''[x] + Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \sqrt [3]{-\frac {1}{3}} c_2 x \, _2F_2\left (\frac {1}{3}-\frac {a}{3},\frac {1}{3}-\frac {b}{3};\frac {2}{3},\frac {4}{3};\frac {x^3}{3}\right )+c_1 \, _2F_2\left (-\frac {a}{3},-\frac {b}{3};\frac {1}{3},\frac {2}{3};\frac {x^3}{3}\right )+\left (-\frac {1}{3}\right )^{2/3} c_3 x^2 \, _2F_2\left (\frac {2}{3}-\frac {a}{3},\frac {2}{3}-\frac {b}{3};\frac {4}{3},\frac {5}{3};\frac {x^3}{3}\right ) \]