4.8 problem 1456

4.8.1 Maple step by step solution

Internal problem ID [9782]
Internal file name [OUTPUT/8725_Monday_June_06_2022_05_20_34_AM_87492495/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 3, linear third order
Problem number: 1456.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y=0} \] Unable to solve this ODE.

4.8.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying high order exact linear fully integrable 
trying to convert to a linear ODE with constant coefficients 
trying differential order: 3; missing the dependent variable 
Equation is the 2nd symmetric power of diff(diff(y(x),x),x)+1/4*x^(2*c-2)*y(x) = 0 
-> Attempting now to solve this lower order ODE 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying an equivalence, under non-integer power transformations, 
      to LODEs admitting Liouvillian solutions. 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      <- Bessel successful 
   <- special function solution successful`
 

Solution by Maple

Time used: 0.109 (sec). Leaf size: 73

dsolve(diff(diff(diff(y(x),x),x),x)+x^(2*c-2)*diff(y(x),x)+(c-1)*x^(2*c-3)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = x \left (c_{1} \operatorname {BesselJ}\left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right )^{2}+c_{2} \operatorname {BesselY}\left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right )^{2}+c_{3} \operatorname {BesselJ}\left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right ) \operatorname {BesselY}\left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right )\right ) \]

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 183

DSolve[(-1 + c)*x^(-3 + 2*c)*y[x] + x^(-2 + 2*c)*y'[x] + Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 \, _1F_2\left (\frac {1}{2}-\frac {1}{2 c};1-\frac {1}{c},1-\frac {1}{2 c};-\frac {x^{2 c}}{4 c^2}\right )+4^{-1/c} c^{-2/c} c_3 \left (x^{2 c}\right )^{\frac {1}{c}} \, _1F_2\left (\frac {1}{2}+\frac {1}{2 c};1+\frac {1}{2 c},1+\frac {1}{c};-\frac {x^{2 c}}{4 c^2}\right )+2^{-1/c} c^{-1/c} c_2 \left (x^{2 c}\right )^{\left .\frac {1}{2}\right /c} \, _1F_2\left (\frac {1}{2};1-\frac {1}{2 c},1+\frac {1}{2 c};-\frac {x^{2 c}}{4 c^2}\right ) \]