2.6.4 Problem 4 (eq 50)

Solved as second order ode by reversing roles of dependent and independent variables
Solved as second order missing y ode
Maple
Mathematica
Sympy

Internal problem ID [18497]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at page 91
Problem number : 4 (eq 50)
Date solved : Monday, March 31, 2025 at 05:37:44 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

Solved as second order ode by reversing roles of dependent and independent variables

Time used: 1.933 (sec)

Solve

ϕ=4πncv02+2e(ϕV0)m

reversing the roles of the dependent and independent variables, the ode becomes

d2dϕ2x(ϕ)=4πnc(ddϕx(ϕ))3v02m+2eV02eϕm

Which is now solved for x(ϕ) instead for ϕ

Solved as second order missing y ode

Time used: 1.299 (sec)

This is second order ode with missing dependent variable x. Let

u(ϕ)=x

Then

u(ϕ)=x

Hence the ode becomes

u(ϕ)+4πncu(ϕ)3v02m+2eV02eϕm=0

Which is now solved for u(ϕ) as first order ode.

The ode

(1)u=4πncu3v02m2eV0+2eϕm

is separable as it can be written as

u=4πncu3v02m2eV0+2eϕm=f(ϕ)g(u)

Where

f(ϕ)=4πncv02m2eV0+2eϕmg(u)=u3

Integrating gives

1g(u)du=f(ϕ)dϕ1u3du=4πncv02m2eV0+2eϕmdϕ
12u2=4(2V0+2ϕ)e+v02mmπncmec5

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u)=0 or

u3=0

for u gives

u=0

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

12u2=4(2V0+2ϕ)e+v02mmπncmec5u=0

In summary, these are the solution found for u(ϕ)

12u2=4(2V0+2ϕ)e+v02mmπncmec5u=0

For solution 12u2=4(2V0+2ϕ)e+v02mmπncmec5, since u=x(ϕ) then we now have a new first order ode to solve which is

12x(ϕ)2=4(2V0+2ϕ)e+v02mmπncmec5

Solving for the derivative gives these ODE’s to solve

(1)x=2(4v02m+2eV02eϕmπncmc5e)e2(4v02m+2eV02eϕmπncmc5e)(2)x=2(4v02m+2eV02eϕmπncmc5e)e8v02m+2eV02eϕmπncm2c5e

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form x=f(ϕ), then we only need to integrate f(ϕ).

dx=2(4v02m+2eV02eϕmπncmc5e)e2(4v02m+2eV02eϕmπncmc5e)dϕx=2(e2c54eπmn2eϕmv02m+2eV0mce2c5+(4eπmn2eϕmv02m+2eV0mce2c5)3/23)16me2π2c2n2+c6
x=2((2V0+2ϕ)e+v02mmπncm+c5e2)24cmnπe(2V0+2ϕ)e+v02mme2c5+24c6meπ2c2n224emπ2c2n2

Solving Eq. (2)

Since the ode has the form x=f(ϕ), then we only need to integrate f(ϕ).

dx=2(4v02m+2eV02eϕmπncmc5e)e8v02m+2eV02eϕmπncm2c5edϕx=2(e2c54eπmn2eϕmv02m+2eV0mce2c5+(4eπmn2eϕmv02m+2eV0mce2c5)3/23)16me2π2c2n2+c7
x=2((2V0+2ϕ)e+v02mmπncm+c5e2)24cmnπe(2V0+2ϕ)e+v02mme2c5+24c7meπ2c2n224emπ2c2n2

For solution u(ϕ)=0, since u=x then we now have a new first order ode to solve which is

x=0

Since the ode has the form x=f(ϕ), then we only need to integrate f(ϕ).

dx=0dϕ+c8x=c8

In summary, these are the solution found for (x)

x=2((2V0+2ϕ)e+v02mmπncm+c5e2)24cmnπe(2V0+2ϕ)e+v02mme2c5+24c6meπ2c2n224emπ2c2n2x=c8

Will add steps showing solving for IC soon.

Summary of solutions found

x=c8x=2((2V0+2ϕ)e+v02mmπncm+c5e2)24cmnπe(2V0+2ϕ)e+v02mme2c5+24c6meπ2c2n224emπ2c2n2

Now that the reversed roles ode was solved, we will change back to the original roles. This results in the above solution becoming the following.

x=2((2V0+2ϕ(x))e+v02mmπncm+c5e2)24cmnπe(2V0+2ϕ(x))e+v02mme2c5+24c6meπ2c2n224emπ2c2n2

Will add steps showing solving for IC soon.

Summary of solutions found

x=2((2V0+2ϕ(x))e+v02mmπncm+c5e2)24cmnπe(2V0+2ϕ(x))e+v02mme2c5+24c6meπ2c2n224emπ2c2n2

Maple. Time used: 0.086 (sec). Leaf size: 210
ode:=diff(diff(phi(x),x),x) = 4*Pi*n*c/(v__0^2+2*e/m*(phi(x)-V__0))^(1/2); 
dsolve(ode,phi(x), singsol=all);
 
eϕ(2V0+2_a)e+v02mm4e(2V0+2_a)e+v02mm(c1(2_a+2V0)ev02m16+nπ((_aV0)e+v02m2)c)d_axc2=0eϕ(2V0+2_a)e+v02mm4e(2V0+2_a)e+v02mm(c1(2_a+2V0)ev02m16+nπ((_aV0)e+v02m2)c)d_axc2=0

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
   -> Computing symmetries using: way = 3 
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)-4*Pi*n*c/(-(-m*v__0^2+2 
*V__0*e-2*_a*e)/m)^(1/2) = 0, _b(_a), HINT = [[-2/3*(-m*v__0^2+2*V__0*e-2*_a*e) 
/e, 1/3*_b]] 
   *** Sublevel 2 *** 
   symmetry methods on request 
   1st order, trying reduction of order with given symmetries: 
[-2/3*(-m*v__0^2+2*V__0*e-2*_a*e)/e, 1/3*_b] 
   1st order, trying the canonical coordinates of the invariance group 
      -> Calling odsolve with the ODE, diff(y(x),x) = y(x)/((4*x-4*V__0)*e+2* 
v__0^2*m)*e, y(x) 
         *** Sublevel 3 *** 
         Methods for first order ODEs: 
         --- Trying classification methods --- 
         trying a quadrature 
         trying 1st order linear 
         <- 1st order linear successful 
   <- 1st order, canonical coordinates successful 
<- differential order: 2; canonical coordinates successful 
<- differential order 2; missing variables successful
 

Mathematica. Time used: 79.952 (sec). Leaf size: 2754
ode=D[phi[x],{x,2}]==4*Pi*n*c/Sqrt[v0^2+2*e/m*(phi[x]-V0)]; 
ic={}; 
DSolve[{ode,ic},phi[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
V__0 = symbols("V__0") 
c = symbols("c") 
e = symbols("e") 
m = symbols("m") 
n = symbols("n") 
v__0 = symbols("v__0") 
phi = Function("phi") 
ode = Eq(-4*pi*c*n/sqrt(2*e*(-V__0 + phi(x))/m + v__0**2) + Derivative(phi(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=phi(x),ics=ics)
 
Timed Out