2.6.4 Problem 4 (eq 50)

2.6.4.1 second order ode missing x
2.6.4.2 second order ode can be made integrable
2.6.4.3 Maple
2.6.4.4 Mathematica
2.6.4.5 Sympy

Internal problem ID [19739]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 33. Problems at page 91
Problem number : 4 (eq 50)
Date solved : Wednesday, January 28, 2026 at 11:02:25 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.6.4.1 second order ode missing x

20.784 (sec)

\begin{align*} \phi ^{\prime \prime }&=\frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \\ \end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(\phi \) an independent variable. Using
\begin{align*} \phi ' &= p \end{align*}

Then

\begin{align*} \phi '' &= \frac {dp}{dx}\\ &= \frac {dp}{d\phi }\frac {d\phi }{dx}\\ &= p \frac {dp}{d\phi } \end{align*}

Hence the ode becomes

\begin{align*} p \left (\phi \right ) \left (\frac {d}{d \phi }p \left (\phi \right )\right ) = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \end{align*}

Which is now solved as first order ode for \(p(\phi )\).

Entering first order ode separable solverThe ode

\begin{equation} p^{\prime } = \frac {4 \pi n c}{\sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, p} \end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }&= \frac {4 \pi n c}{\sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, p}\\ &= f(\phi ) g(p) \end{align*}

Where

\begin{align*} f(\phi ) &= \frac {4 \pi n c}{\sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}}\\ g(p) &= \frac {1}{p} \end{align*}

Integrating gives

\begin{align*} \int { \frac {1}{g(p)} \,dp} &= \int { f(\phi ) \,d\phi } \\ \int { p\,dp} &= \int { \frac {4 \pi n c}{\sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}} \,d\phi } \\ \end{align*}
\[ \frac {p^{2}}{2}=\frac {8 \pi n \left (e \left (\phi -V_{0} \right )+\frac {v_{0}^{2} m}{2}\right ) c}{\sqrt {\frac {2 e \left (\phi -V_{0} \right )+v_{0}^{2} m}{m}}\, e}+c_1 \]
Solving for \(p\) gives
\begin{align*} p &= \frac {\sqrt {2}\, \sqrt {e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (4 \pi c m n \,v_{0}^{2}-8 \pi V_{0} c e n +8 \pi c e n \phi +c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}}{e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}} \\ p &= -\frac {\sqrt {2}\, \sqrt {e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (4 \pi c m n \,v_{0}^{2}-8 \pi V_{0} c e n +8 \pi c e n \phi +c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}}{e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}} \\ \end{align*}
For solution (1) found earlier, since \(p=\phi ^{\prime }\) then the new first order ode to solve is
\begin{align*} \phi ^{\prime } = \frac {\sqrt {2}\, \sqrt {e \sqrt {-\frac {-v_{0}^{2} m -2 e \phi +2 e V_{0}}{m}}\, \left (4 \pi c m n \,v_{0}^{2}-8 \pi V_{0} c e n +8 \pi c e n \phi +c_1 e \sqrt {-\frac {-v_{0}^{2} m -2 e \phi +2 e V_{0}}{m}}\right )}}{e \sqrt {-\frac {-v_{0}^{2} m -2 e \phi +2 e V_{0}}{m}}} \end{align*}

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int \frac {e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \sqrt {2}}{2 \sqrt {e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (4 \pi c m n \,v_{0}^{2}-8 \pi V_{0} c e n +8 \pi c e n \phi +c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}}d \phi &= dx\\ -\frac {\sqrt {2}\, \left (-4 \pi c m n \,v_{0}^{2}+8 \pi V_{0} c e n -8 \pi c e n \phi -c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right ) \sqrt {\frac {\left (-v_{0}^{2} m +2 e V_{0} -2 e \phi \right ) \left (4 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m +c_1 e \right )}{m}}\, \left (2 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m -c_1 e \right )}{24 \sqrt {-e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (-4 \pi c m n \,v_{0}^{2}+8 \pi V_{0} c e n -8 \pi c e n \phi -c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}\, \sqrt {\sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (-4 \pi c m n \,v_{0}^{2}+8 \pi V_{0} c e n -8 \pi c e n \phi -c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}\, m \,\pi ^{2} n^{2} c^{2}}&= x +c_2 \end{align*}

Simplifying the above gives

\begin{align*} \frac {\left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {-\frac {\left (v_{0}^{2} m +2 e \phi -2 e V_{0} \right ) \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +c_1 e \right )}{m}}}{3 \sqrt {\sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, e \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, \sqrt {-8 \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, m \,\pi ^{2} n^{2} c^{2}} &= x +c_2 \\ \end{align*}
For solution (2) found earlier, since \(p=\phi ^{\prime }\) then the new first order ode to solve is
\begin{align*} \phi ^{\prime } = -\frac {\sqrt {2}\, \sqrt {e \sqrt {-\frac {-v_{0}^{2} m -2 e \phi +2 e V_{0}}{m}}\, \left (4 \pi c m n \,v_{0}^{2}-8 \pi V_{0} c e n +8 \pi c e n \phi +c_1 e \sqrt {-\frac {-v_{0}^{2} m -2 e \phi +2 e V_{0}}{m}}\right )}}{e \sqrt {-\frac {-v_{0}^{2} m -2 e \phi +2 e V_{0}}{m}}} \end{align*}

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int -\frac {e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \sqrt {2}}{2 \sqrt {e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (4 \pi c m n \,v_{0}^{2}-8 \pi V_{0} c e n +8 \pi c e n \phi +c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}}d \phi &= dx\\ \frac {\sqrt {2}\, \left (-4 \pi c m n \,v_{0}^{2}+8 \pi V_{0} c e n -8 \pi c e n \phi -c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right ) \sqrt {\frac {\left (-v_{0}^{2} m +2 e V_{0} -2 e \phi \right ) \left (4 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m +c_1 e \right )}{m}}\, \left (2 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m -c_1 e \right )}{24 \sqrt {-e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (-4 \pi c m n \,v_{0}^{2}+8 \pi V_{0} c e n -8 \pi c e n \phi -c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}\, \sqrt {\sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \left (-4 \pi c m n \,v_{0}^{2}+8 \pi V_{0} c e n -8 \pi c e n \phi -c_1 e \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\right )}\, m \,\pi ^{2} n^{2} c^{2}}&= x +c_3 \end{align*}

Simplifying the above gives

\begin{align*} -\frac {\left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {-\frac {\left (v_{0}^{2} m +2 e \phi -2 e V_{0} \right ) \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +c_1 e \right )}{m}}}{3 \sqrt {\sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, e \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, \sqrt {-8 \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, m \,\pi ^{2} n^{2} c^{2}} &= x +c_3 \\ \end{align*}

Summary of solutions found

\begin{align*} -\frac {\left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {-\frac {\left (v_{0}^{2} m +2 e \phi -2 e V_{0} \right ) \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +c_1 e \right )}{m}}}{3 \sqrt {\sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, e \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, \sqrt {-8 \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, m \,\pi ^{2} n^{2} c^{2}} &= x +c_3 \\ \frac {\left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {-\frac {\left (v_{0}^{2} m +2 e \phi -2 e V_{0} \right ) \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +c_1 e \right )}{m}}}{3 \sqrt {\sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, e \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, \sqrt {-8 \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, \left (\frac {c_1 e \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}{8}+\pi c n \left (\frac {v_{0}^{2} m}{2}+e \phi -e V_{0} \right )\right )}\, m \,\pi ^{2} n^{2} c^{2}} &= x +c_2 \\ \end{align*}
2.6.4.2 second order ode can be made integrable

62.149 (sec)

\begin{align*} \phi ^{\prime \prime }&=\frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \\ \end{align*}
Entering second order ode can be made integrable solverMultiplying the ode by \(\phi ^{\prime }\) gives
\[ \phi ^{\prime } \phi ^{\prime \prime }-\frac {4 \phi ^{\prime } \pi n c}{\sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}} = 0 \]
Integrating the above w.r.t \(x\) gives
\begin{align*} \int \left (\phi ^{\prime } \phi ^{\prime \prime }-\frac {4 \phi ^{\prime } \pi n c}{\sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}}\right )d x &= 0 \\ \frac {{\phi ^{\prime }}^{2}}{2}-\frac {4 \pi n c \sqrt {\frac {2 e \phi }{m}+\frac {v_{0}^{2} m -2 e V_{0}}{m}}\, m}{e} &= c_1 \end{align*}

Which is now solved for \(\phi \). Solving for the derivative gives these ODE’s to solve

\begin{align*} \tag{1} \phi ^{\prime }&=\frac {\sqrt {2}\, \sqrt {e \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +c_1 e \right )}}{e} \\ \tag{2} \phi ^{\prime }&=-\frac {\sqrt {2}\, \sqrt {e \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +c_1 e \right )}}{e} \\ \end{align*}
Now each of the above is solved separately.

Solving Eq. (1)

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int \frac {e \sqrt {2}}{2 \sqrt {e \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m -2 e V_{0} +2 e \phi }{m}}\, m +c_1 e \right )}}d \phi &= dx\\ \frac {\sqrt {2}\, \left (4 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m +c_1 e \right ) \left (2 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m -c_1 e \right )}{24 \sqrt {e \left (4 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m +c_1 e \right )}\, m \,c^{2} n^{2} \pi ^{2}}&= x +c_4 \end{align*}

Simplifying the above gives

\begin{align*} \frac {\left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +\frac {c_1 e}{4}\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {2}}{3 \sqrt {4 e c m n \pi \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}+c_1 \,e^{2}}\, c^{2} m \,n^{2} \pi ^{2}} &= x +c_4 \\ \end{align*}
Solving Eq. (2)

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int -\frac {e \sqrt {2}}{2 \sqrt {e \left (4 \pi n c \sqrt {\frac {v_{0}^{2} m -2 e V_{0} +2 e \phi }{m}}\, m +c_1 e \right )}}d \phi &= dx\\ -\frac {\sqrt {2}\, \left (4 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m +c_1 e \right ) \left (2 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m -c_1 e \right )}{24 \sqrt {e \left (4 \sqrt {-\frac {-v_{0}^{2} m +2 e V_{0} -2 e \phi }{m}}\, \pi n c m +c_1 e \right )}\, m \,c^{2} n^{2} \pi ^{2}}&= x +c_5 \end{align*}

Simplifying the above gives

\begin{align*} -\frac {\left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +\frac {c_1 e}{4}\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {2}}{3 \sqrt {4 e c m n \pi \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}+c_1 \,e^{2}}\, c^{2} m \,n^{2} \pi ^{2}} &= x +c_5 \\ \end{align*}

Summary of solutions found

\begin{align*} \frac {\left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m +\frac {c_1 e}{4}\right ) \left (\pi n c \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}\, m -\frac {c_1 e}{2}\right ) \sqrt {2}}{3 \sqrt {4 e c m n \pi \sqrt {\frac {v_{0}^{2} m +2 e \phi -2 e V_{0}}{m}}+c_1 \,e^{2}}\, c^{2} m \,n^{2} \pi ^{2}} &= x +c_4 \\ \end{align*}
2.6.4.3 Maple. Time used: 0.064 (sec). Leaf size: 210
ode:=diff(diff(phi(x),x),x) = 4*Pi*n*c/(v__0^2+2*e/m*(phi(x)-V__0))^(1/2); 
dsolve(ode,phi(x), singsol=all);
 
\begin{align*} e \int _{}^{\phi }\frac {\sqrt {\frac {\left (-2 V_{0} +2 \textit {\_a} \right ) e +v_{0}^{2} m}{m}}}{4 \sqrt {\left (\frac {c_1 \sqrt {\left (2 V_{0} -2 \textit {\_a} \right ) e -v_{0}^{2} m}}{16}+\pi n c \left (\left (\textit {\_a} -V_{0} \right ) e +\frac {v_{0}^{2} m}{2}\right )\right ) e \sqrt {\frac {\left (-2 V_{0} +2 \textit {\_a} \right ) e +v_{0}^{2} m}{m}}}}d \textit {\_a} -x -c_2 &= 0 \\ -e \int _{}^{\phi }\frac {\sqrt {\frac {\left (-2 V_{0} +2 \textit {\_a} \right ) e +v_{0}^{2} m}{m}}}{4 \sqrt {\left (\frac {c_1 \sqrt {\left (2 V_{0} -2 \textit {\_a} \right ) e -v_{0}^{2} m}}{16}+\pi n c \left (\left (\textit {\_a} -V_{0} \right ) e +\frac {v_{0}^{2} m}{2}\right )\right ) e \sqrt {\frac {\left (-2 V_{0} +2 \textit {\_a} \right ) e +v_{0}^{2} m}{m}}}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
   -> Computing symmetries using: way = 3 
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)-4*Pi*n*c/(-(-m*v__0^2+2 
*V__0*e-2*_a*e)/m)^(1/2) = 0, _b(_a), HINT = [[-2/3*(-m*v__0^2+2*V__0*e-2*_a*e) 
/e, 1/3*_b]] 
   *** Sublevel 2 *** 
   symmetry methods on request 
   1st order, trying reduction of order with given symmetries: 
[-2/3*(-m*v__0^2+2*V__0*e-2*_a*e)/e, 1/3*_b] 
   1st order, trying the canonical coordinates of the invariance group 
      -> Calling odsolve with the ODE, diff(y(x),x) = y(x)/((4*x-4*V__0)*e+2* 
v__0^2*m)*e, y(x) 
         *** Sublevel 3 *** 
         Methods for first order ODEs: 
         --- Trying classification methods --- 
         trying a quadrature 
         trying 1st order linear 
         <- 1st order linear successful 
   <- 1st order, canonical coordinates successful 
<- differential order: 2; canonical coordinates successful 
<- differential order 2; missing variables successful
 
2.6.4.4 Mathematica. Time used: 91.095 (sec). Leaf size: 2754
ode=D[phi[x],{x,2}]==4*Pi*n*c/Sqrt[v0^2+2*e/m*(phi[x]-V0)]; 
ic={}; 
DSolve[{ode,ic},phi[x],x,IncludeSingularSolutions->True]
 

Too large to display

2.6.4.5 Sympy
from sympy import * 
x = symbols("x") 
V__0 = symbols("V__0") 
c = symbols("c") 
e = symbols("e") 
m = symbols("m") 
n = symbols("n") 
v__0 = symbols("v__0") 
phi = Function("phi") 
ode = Eq(-4*pi*c*n/sqrt(2*e*(-V__0 + phi(x))/m + v__0**2) + Derivative(phi(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=phi(x),ics=ics)
 
Timed Out
 
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0] 
Sympy version 1.14.0