Internal
problem
ID
[18498]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
33.
Problems
at
page
91
Problem
number
:
8
(eq
68)
Date
solved
:
Monday, March 31, 2025 at 05:38:16 PM
CAS
classification
:
[_separable]
Time used: 0.107 (sec)
Solve
The ode
is separable as it can be written as
Where
Integrating gives
We now need to find the singular solutions, these are found by finding for what values
for
Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
Solving for
Which simplifies to
Summary of solutions found
Time used: 0.171 (sec)
Solve
To solve an ode of the form
We assume there exists a function
Hence
But since
If the above condition is satisfied, then the original ode is called exact. We still need to determine
Therefore
Comparing (1A) and (2A) shows that
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
Using result found above gives
And
Since
Since
Since
The result of integrating gives
And
So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is
The following equations are now set up to solve for the function
Integrating (1) w.r.t.
Where
But equation (2) says that
Solving equation (5) for
Integrating the above w.r.t
Where
But since
Solving for
Which simplifies to
Summary of solutions found
Time used: 0.394 (sec)
Solve
Writing the ode as
The condition of Lie symmetry is the linearized PDE given by
To determine
Where the unknown coefficients are
Substituting equations (1E,2E) and
Putting the above in normal form gives
Setting the numerator to zero gives
Looking at the above PDE shows the following are all the terms with
The following substitution is now made to be able to collect on
all terms with
The above PDE (6E) now becomes
Collecting the above on the terms
Equation (7E) now becomes
Setting each coefficients in (8E) to zero gives the following equations to solve
Solving the above equations for the unknowns gives
Substituting the above solution in the anstaz (1E,2E) (using
The next step is to determine the canonical coordinates
The characteristic pde which is used to find the canonical coordinates is
The above comes from the requirements that
Which results in
Now that
Where in the above
Evaluating all the partial derivatives gives
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
We now need to express the RHS as function of
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates
Since the ode has the form
To complete the solution, we just need to transform the above back to
Solving for
Summary of solutions found
Time used: 1.382 (sec)
Solve
In canonical form the ODE is
This is a Riccati ODE. Comparing the ODE to solve
With Riccati ODE standard form
Shows that
Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for
But
Substituting the above terms back in equation (2) gives
Time used: 0.661 (sec)
In normal form the ode
Becomes
Where
Applying change of variables
Where
Let
This ode is solved resulting in
Using (6) to evaluate
Substituting the above in (3) and noting that now
The above ode is now solved for
Where in the above
Since exponential function is never zero, then dividing Eq(2) throughout by
Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
Substituting
Hence
Which simplifies to
The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is
Will add steps showing solving for IC soon.
The above solution is now transformed back to
Will add steps showing solving for IC soon.
Summary of solutions found
Time used: 0.102 (sec)
Solve
In normal form the ode
Becomes
Where
Applying change of variables
Where
Let
Substituting the above into (4) results in
Therefore ode (3) now becomes
The above ode is now solved for
Now from (6)
Substituting the above into the solution obtained gives
Will add steps showing solving for IC soon.
Summary of solutions found
Time used: 0.082 (sec)
Solve
Writing the ode as
Bessel ode has the form
The generalized form of Bessel ode is given by Bowman (1958) as the following
With the standard solution
Comparing (3) to (1) and solving for
Substituting all the above into (4) gives the solution as
Will add steps showing solving for IC soon.
Summary of solutions found
Time used: 0.401 (sec)
Solve
Writing the ode as
Comparing (1) and (2) shows that
Applying the Liouville transformation on the dependent variable gives
Then (2) becomes
Where
Substituting the values of
Comparing the above to (5) shows that
Therefore eq. (4) becomes
Equation (7) is now solved. After finding
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of
Case |
Allowed pole order for |
Allowed value for |
1 |
|
|
2 |
Need to have at least one pole
that is either order |
no condition |
3 |
|
|
The order of
The poles of
Attempting to find a solution using case
Looking at poles of order 2. The partial fractions decomposition of
For the pole at
Since the order of
Let
Comparing Eq. (9) with Eq. (8) shows that
From Eq. (9) the sum up to
Now we need to find
This shows that the coefficient of
Where
We see that the coefficient of the term
Hence
The following table summarizes the findings so far for poles and for the order of
pole |
pole order | |
|
|
| | | | |
Order of |
|
|
|
|
| | |
Now that the all
Where
Since
The above gives
Now that
Let
Substituting the above in eq. (1A) gives
The equation is satisfied since both sides are zero. Therefore the first solution to the ode
The first solution to the original ode in
Which simplifies to
The second solution
Substituting gives
Therefore the solution is
Will add steps showing solving for IC soon.
Summary of solutions found
Taking derivative gives
Doing change of constants, the solution becomes
Summary of solutions found
ode:=diff(y(x),x) = x*(a*y(x)^2+b); dsolve(ode,y(x), singsol=all);
Maple trace
Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful
Maple step by step
ode=D[y[x],x]==x*(a*y[x]^2+b); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-x*(a*y(x)**2 + b) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)