2.1.7 Problem 2 (i)

2.1.7.1 Existence and uniqueness analysis
2.1.7.2 Solved using first_order_ode_autonomous
2.1.7.3 Maple
2.1.7.4 Mathematica
2.1.7.5 Sympy

Internal problem ID [19665]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall. London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (i)
Date solved : Thursday, December 11, 2025 at 01:40:41 PM
CAS classification : [_quadrature]

2.1.7.1 Existence and uniqueness analysis
\begin{align*} x^{\prime }&=x^{2}-3 x+2 \\ x \left (0\right ) &= 1 \\ \end{align*}
This is non linear first order ODE. In canonical form it is written as
\begin{align*} x^{\prime } &= f(t,x)\\ &= x^{2}-3 x +2 \end{align*}

The \(x\) domain of \(f(t,x)\) when \(t=0\) is

\[ \{-\infty <x <\infty \} \]
And the point \(x_0 = 1\) is inside this domain. Now we will look at the continuity of
\begin{align*} \frac {\partial f}{\partial x} &= \frac {\partial }{\partial x}\left (x^{2}-3 x +2\right ) \\ &= 2 x -3 \end{align*}

The \(x\) domain of \(\frac {\partial f}{\partial x}\) when \(t=0\) is

\[ \{-\infty <x <\infty \} \]
And the point \(x_0 = 1\) is inside this domain. Therefore solution exists and is unique.
2.1.7.2 Solved using first_order_ode_autonomous

0.070 (sec)

Entering first order ode autonomous solver

\begin{align*} x^{\prime }&=x^{2}-3 x+2 \\ x \left (0\right ) &= 1 \\ \end{align*}
Since the ode has the form \(x^{\prime }=f(x)\) and initial conditions \(\left (t_0,x_0\right ) \) are given such that they satisfy the ode itself, then we can write
\begin{align*} 0 &= \left . f(x) \right |_{x=x_0}\\ 0 &= 0 \end{align*}

And the solution is immediately written as

\begin{align*}x&=x_0\\ x&=1 \end{align*}

Singular solutions are found by solving

\begin{align*} x^{2}-3 x +2&= 0 \end{align*}

for \(x\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

\begin{align*} x = 1 \end{align*}

The following diagram is the phase line diagram. It classifies each of the above equilibrium points as stable or not stable or semi-stable.

Solution plot Slope field \(x^{\prime } = x^{2}-3 x+2\)

Summary of solutions found

\begin{align*} x &= 1 \\ \end{align*}
2.1.7.3 Maple. Time used: 0.004 (sec). Leaf size: 5
ode:=diff(x(t),t) = x(t)^2-3*x(t)+2; 
ic:=[x(0) = 1]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = 1 \]

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
<- separable successful
 

Maple step by step

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}x \left (t \right )=x \left (t \right )^{2}-3 x \left (t \right )+2, x \left (0\right )=1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}x \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}x \left (t \right )=x \left (t \right )^{2}-3 x \left (t \right )+2 \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}x \left (t \right )}{x \left (t \right )^{2}-3 x \left (t \right )+2}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}x \left (t \right )}{x \left (t \right )^{2}-3 x \left (t \right )+2}d t =\int 1d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (x \left (t \right )-2\right )-\ln \left (x \left (t \right )-1\right )=t +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} x \left (t \right ) \\ {} & {} & x \left (t \right )=\frac {-2+{\mathrm e}^{t +\mathit {C1}}}{{\mathrm e}^{t +\mathit {C1}}-1} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & x \left (t \right )=\frac {-2+\mathit {C1} \,{\mathrm e}^{t}}{\mathit {C1} \,{\mathrm e}^{t}-1} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} x \left (0\right )=1 \\ {} & {} & 1=\frac {-2+\mathit {C1}}{\mathit {C1} -1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \textrm {No solution}\hspace {3pt} \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]
2.1.7.4 Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[x[t],t]==x[t]^2-3*x[t]+2; 
ic={x[0]==1}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 1 \end{align*}
2.1.7.5 Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-x(t)**2 + 3*x(t) + Derivative(x(t), t) - 2,0) 
ics = {x(0): 1} 
dsolve(ode,func=x(t),ics=ics)
                                                                                  
                                                                                  
 
ValueError : Couldnt solve for initial conditions