2.1.8 Problem 2 (ii)
Internal
problem
ID
[19666]
Book
:
Elementary
Differential
Equations.
By
R.L.E.
Schwarzenberger.
Chapman
and
Hall.
London.
First
Edition
(1969)
Section
:
Chapter
3.
Solutions
of
first-order
equations.
Exercises
at
page
47
Problem
number
:
2
(ii)
Date
solved
:
Friday, January 30, 2026 at 12:06:07 AM
CAS
classification
:
[_quadrature]
2.1.8.1 Existence and uniqueness analysis
\begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*}
This is non linear first order ODE. In canonical form it is written as \begin{align*} x^{\prime } &= f(t,x)\\ &= b \,{\mathrm e}^{x} \end{align*}
The \(x\) domain of \(f(t,x)\) when \(t=0\) is
\[
\{-\infty <x <\infty \}
\]
And the point \(x_0 = 1\) is inside this domain. Now we will look at the continuity
of \begin{align*} \frac {\partial f}{\partial x} &= \frac {\partial }{\partial x}\left (b \,{\mathrm e}^{x}\right ) \\ &= b \,{\mathrm e}^{x} \end{align*}
The \(x\) domain of \(\frac {\partial f}{\partial x}\) when \(t=0\) is
\[
\{-\infty <x <\infty \}
\]
And the point \(x_0 = 1\) is inside this domain. Therefore solution exists and is
unique.
2.1.8.2 Solved using first_order_ode_autonomous
0.159 (sec)
Entering first order ode autonomous solver
\begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*}
Integrating gives \begin{align*} \int \frac {{\mathrm e}^{-x}}{b}d x &= dt\\ -\frac {{\mathrm e}^{-x}}{b}&= t +c_1 \end{align*}
Solving for initial conditions the solution becomes
\begin{align*}
-\frac {{\mathrm e}^{-x}}{b} &= t -\frac {{\mathrm e}^{-1}}{b} \\
\end{align*}
Solving for \(x\) gives \begin{align*}
x &= -\ln \left (-\left (t b \,{\mathrm e}-1\right ) {\mathrm e}^{-1}\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
x &= -\ln \left (-\left (t b \,{\mathrm e}-1\right ) {\mathrm e}^{-1}\right ) \\
\end{align*}
2.1.8.3 Solved using first_order_ode_exact
0.151 (sec)
Entering first order ode exact solver
\begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*}
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is \[ M(t,x) \mathop {\mathrm {d}t}+ N(t,x) \mathop {\mathrm {d}x}=0 \tag {1A} \]
Therefore \begin{align*} \mathop {\mathrm {d}x} &= \left (b \,{\mathrm e}^{x}\right )\mathop {\mathrm {d}t}\\ \left (-b \,{\mathrm e}^{x}\right ) \mathop {\mathrm {d}t} + \mathop {\mathrm {d}x} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(t,x) &= -b \,{\mathrm e}^{x}\\ N(t,x) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial x} = \frac {\partial N}{\partial t} \]
Using result found above gives \begin{align*} \frac {\partial M}{\partial x} &= \frac {\partial }{\partial x} \left (-b \,{\mathrm e}^{x}\right )\\ &= -b \,{\mathrm e}^{x} \end{align*}
And
\begin{align*} \frac {\partial N}{\partial t} &= \frac {\partial }{\partial t} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial x} \neq \frac {\partial N}{\partial t}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating
factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial x} - \frac {\partial N}{\partial t} \right ) \\ &=1\left ( \left ( -b \,{\mathrm e}^{x}\right ) - \left (0 \right ) \right ) \\ &=-b \,{\mathrm e}^{x} \end{align*}
Since \(A\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a second
method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial t} - \frac {\partial M}{\partial x} \right ) \\ &=-\frac {{\mathrm e}^{-x}}{b}\left ( \left ( 0\right ) - \left (-b \,{\mathrm e}^{x} \right ) \right ) \\ &=-1 \end{align*}
Since \(B\) does not depend on \(t\), it can be used to obtain an integrating factor. Let the integrating
factor be \(\mu \). Then
\begin{align*} \mu &= e^{\int B \mathop {\mathrm {d}x}} \\ &= e^{\int -1\mathop {\mathrm {d}x} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{-x } \\ &= {\mathrm e}^{-x} \end{align*}
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\) and \(\overline {N}\) so
not to confuse them with the original \(M\) and \(N\).
\begin{align*} \overline {M} &=\mu M \\ &= {\mathrm e}^{-x}\left (-b \,{\mathrm e}^{x}\right ) \\ &= -b \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= {\mathrm e}^{-x}\left (1\right ) \\ &= {\mathrm e}^{-x} \end{align*}
So now a modified ODE is obtained from the original ODE which will be exact and can be solved
using the standard method. The modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}x}}{\mathop {\mathrm {d}t}} &= 0 \\ \left (-b\right ) + \left ({\mathrm e}^{-x}\right ) \frac { \mathop {\mathrm {d}x}}{\mathop {\mathrm {d}t}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (t,x\right )\)
\begin{align*} \frac {\partial \phi }{\partial t } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial x } &= \overline {N}\tag {2} \end{align*}
Integrating (1) w.r.t. \(t\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial t} \mathop {\mathrm {d}t} &= \int \overline {M}\mathop {\mathrm {d}t} \\
\int \frac {\partial \phi }{\partial t} \mathop {\mathrm {d}t} &= \int -b\mathop {\mathrm {d}t} \\
\tag{3} \phi &= -t b+ f(x) \\
\end{align*}
Where \(f(x)\) is used for the constant of integration since \(\phi \) is a function of
both \(t\) and \(x\). Taking derivative of equation (3) w.r.t \(x\) gives \begin{equation}
\tag{4} \frac {\partial \phi }{\partial x} = 0+f'(x)
\end{equation}
But equation (2) says that \(\frac {\partial \phi }{\partial x} = {\mathrm e}^{-x}\). Therefore
equation (4) becomes \begin{equation}
\tag{5} {\mathrm e}^{-x} = 0+f'(x)
\end{equation}
Solving equation (5) for \( f'(x)\) gives \[
f'(x) = {\mathrm e}^{-x}
\]
Integrating the above w.r.t \(x\) gives \begin{align*}
\int f'(x) \mathop {\mathrm {d}x} &= \int \left ( {\mathrm e}^{-x}\right ) \mathop {\mathrm {d}x} \\
f(x) &= -{\mathrm e}^{-x}+ c_1 \\
\end{align*}
\[
\phi = -t b -{\mathrm e}^{-x}+ c_1
\]
But
since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and combining \(c_1\) and \(c_2\) constants
into the constant \(c_1\) gives the solution as \[
c_1 = -t b -{\mathrm e}^{-x}
\]
Solving for initial conditions the solution becomes \begin{align*}
-t b -{\mathrm e}^{-x} &= -{\mathrm e}^{-1} \\
\end{align*}
Solving for \(x\) gives \begin{align*}
x &= -\ln \left (-\left (t b \,{\mathrm e}-1\right ) {\mathrm e}^{-1}\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
x &= -\ln \left (-\left (t b \,{\mathrm e}-1\right ) {\mathrm e}^{-1}\right ) \\
\end{align*}
2.1.8.4 Solved using first_order_ode_dAlembert
0.343 (sec)
Entering first order ode dAlembert solver
\begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*}
Let \(p=x^{\prime }\) the ode becomes \begin{align*} p = b \,{\mathrm e}^{x} \end{align*}
Solving for \(x\) from the above results in
\begin{align*}
\tag{1} x &= \ln \left (\frac {p}{b}\right ) \\
\end{align*}
This has the form \begin{align*} x=t f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=x'(t)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(t\) gives
\begin{align*} p &= f+(t f'+g') \frac {dp}{dt}\\ p-f &= (t f'+g') \frac {dp}{dt}\tag {2} \end{align*}
Comparing the form \(x=t f + g\) to (1A) shows that
\begin{align*} f &= 0\\ g &= \ln \left (\frac {p}{b}\right ) \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p = \frac {p^{\prime }\left (t \right )}{p}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dt}=0\) in the above which gives
\begin{align*} p = 0 \end{align*}
No valid singular solutions found.
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}t}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (t \right ) = p \left (t \right )^{2}
\end{equation}
This ODE is now solved for \(p \left (t \right )\).
No inversion is needed.
Integrating gives
\begin{align*} \int \frac {1}{p^{2}}d p &= dt\\ -\frac {1}{p}&= t +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} p^{2}&= 0 \end{align*}
for \(p \left (t \right )\). This is because of dividing by the above earlier. This gives the following singular solution(s),
which also has to satisfy the given ODE.
\begin{align*} p \left (t \right ) = 0 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
x &= \ln \left (-\frac {1}{\left (t +c_1 \right ) b}\right ) \\
\end{align*}
Solving for initial conditions the solution
becomes \begin{align*}
x &= \ln \left (\frac {1}{-t b +{\mathrm e}^{-1}}\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
x &= \ln \left (\frac {1}{-t b +{\mathrm e}^{-1}}\right ) \\
\end{align*}
0.111 (sec)
Entering first order ode special form ID 1 solver
\begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*}
Writing the ode as \begin{align*} x^{\prime } &= b \,{\mathrm e}^{x}\tag {1} \end{align*}
And using the substitution \(u={\mathrm e}^{-x}\) then
\begin{align*} u' &= -x^{\prime } {\mathrm e}^{-x} \end{align*}
The above shows that
\begin{align*} x^{\prime } &= -u^{\prime }\left (t \right ) {\mathrm e}^{x}\\ &= -\frac {u^{\prime }\left (t \right )}{u} \end{align*}
Substituting this in (1) gives
\begin{align*} -\frac {u^{\prime }\left (t \right )}{u}&=\frac {b}{u} \end{align*}
The above simplifies to
\begin{align*} u^{\prime }\left (t \right )&=-b\tag {2} \end{align*}
Now ode (2) is solved for \(u \left (t \right )\).
Since the ode has the form \(u^{\prime }\left (t \right )=f(t)\), then we only need to integrate \(f(t)\).
\begin{align*} \int {du} &= \int {-b\, dt}\\ u \left (t \right ) &= -t b + c_1 \end{align*}
\begin{align*} u \left (t \right )&= -t b +c_1 \end{align*}
Substituting the solution found for \(u \left (t \right )\) in \(u={\mathrm e}^{-x}\) gives
\begin{align*} {\mathrm e}^{-x} = -t b +c_1 \end{align*}
Solving for initial conditions the solution becomes
\begin{align*}
{\mathrm e}^{-x} &= -t b +{\mathrm e}^{-1} \\
\end{align*}
Solving for \(x\) gives \begin{align*}
x &= -\ln \left (-\left (t b \,{\mathrm e}-1\right ) {\mathrm e}^{-1}\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
x &= -\ln \left (-\left (t b \,{\mathrm e}-1\right ) {\mathrm e}^{-1}\right ) \\
\end{align*}
2.1.8.6 ✓ Maple. Time used: 0.042 (sec). Leaf size: 14
ode:=diff(x(t),t) = b*exp(x(t));
ic:=[x(0) = 1];
dsolve([ode,op(ic)],x(t), singsol=all);
\[
x = -\ln \left (-b t +{\mathrm e}^{-1}\right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}x \left (t \right )=b \,{\mathrm e}^{x \left (t \right )}, x \left (0\right )=1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}x \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}x \left (t \right )=b \,{\mathrm e}^{x \left (t \right )} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}x \left (t \right )}{{\mathrm e}^{x \left (t \right )}}=b \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}x \left (t \right )}{{\mathrm e}^{x \left (t \right )}}d t =\int b d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{{\mathrm e}^{x \left (t \right )}}=b t +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} x \left (t \right ) \\ {} & {} & x \left (t \right )=\ln \left (-\frac {1}{b t +\mathit {C1}}\right ) \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} x \left (0\right )=1 \\ {} & {} & 1=\ln \left (-\frac {1}{\mathit {C1}}\right ) \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =-\frac {1}{{\mathrm e}} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =-\frac {1}{{\mathrm e}}\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & x \left (t \right )=\ln \left (\frac {1}{-b t +{\mathrm e}^{-1}}\right ) \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & x \left (t \right )=\ln \left (\frac {1}{-b t +{\mathrm e}^{-1}}\right ) \end {array} \]
2.1.8.7 ✓ Mathematica. Time used: 0.003 (sec). Leaf size: 17
ode=D[x[t],t]==b*Exp[x[t]];
ic={x[0]==1};
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
\begin{align*} x(t)&\to 1-\log (1-e b t) \end{align*}
2.1.8.8 ✓ Sympy. Time used: 0.195 (sec). Leaf size: 15
from sympy import *
t = symbols("t")
b = symbols("b")
x = Function("x")
ode = Eq(-b*exp(x(t)) + Derivative(x(t), t),0)
ics = {x(0): 1}
dsolve(ode,func=x(t),ics=ics)
\[
x{\left (t \right )} = \log {\left (- \frac {1}{b t - e^{-1}} \right )}
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=x(t))
('separable', '1st_exact', '1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral')