2.1.21 Problem 21

Maple
Mathematica
Sympy

Internal problem ID [9005]
Book : First order enumerated odes
Section : section 1
Problem number : 21
Date solved : Sunday, March 30, 2025 at 01:58:38 PM
CAS classification : [_rational, _Riccati]

Unknown ode type.

Maple. Time used: 0.008 (sec). Leaf size: 94
ode:=c*diff(y(x),x) = (a*x+b*y(x)^2)/r/x; 
dsolve(ode,y(x), singsol=all);
 
y=xabr2c2cr(BesselY(1,2xabr2c2)c1+BesselJ(1,2xabr2c2))b(c1BesselY(0,2xabr2c2)+BesselJ(0,2xabr2c2))

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
   <- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) cla\ 
ss
 

Maple step by step

Let’s solvec(ddxy(x))=ax+by(x)2rxHighest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivativeddxy(x)=ax+by(x)2rxc
Mathematica. Time used: 0.291 (sec). Leaf size: 207
ode=c*D[y[x],x]==(a*x+b*y[x]^2)/(r*x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)ax(2BesselY(1,2abxcr)+c1BesselJ(1,2abxcr))b(2BesselY(0,2abxcr)+c1BesselJ(0,2abxcr))y(x)axBesselJ(1,2abxcr)bBesselJ(0,2abxcr)
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
r = symbols("r") 
y = Function("y") 
ode = Eq(c*Derivative(y(x), x) - (a*x + b*y(x)**2)/(r*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded