2.1.22 Problem 22

Maple
Mathematica
Sympy

Internal problem ID [9006]
Book : First order enumerated odes
Section : section 1
Problem number : 22
Date solved : Sunday, March 30, 2025 at 01:58:46 PM
CAS classification : [_rational, _Riccati]

Unknown ode type.

Maple. Time used: 0.009 (sec). Leaf size: 106
ode:=c*diff(y(x),x) = (a*x+b*y(x)^2)/r/x^2; 
dsolve(ode,y(x), singsol=all);
 
y=a(BesselY(0,2abxr2c2)c1+BesselJ(0,2abxr2c2))crabxr2c2(c1BesselY(1,2abxr2c2)+BesselJ(1,2abxr2c2))

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
   <- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) cla\ 
ss
 

Maple step by step

Let’s solvec(ddxy(x))=ax+by(x)2rx2Highest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivativeddxy(x)=ax+by(x)2rx2c
Mathematica. Time used: 0.359 (sec). Leaf size: 492
ode=c*D[y[x],x]==(a*x+b*y[x]^2)/(r*x^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)2abBesselY(0,2ab1xcr)+2crBesselY(1,2ab1xcr)1x2abBesselY(2,2ab1xcr)iabc1BesselJ(0,2ab1xcr)icc1rBesselJ(1,2ab1xcr)1x+iabc1BesselJ(2,2ab1xcr)2b1x(2BesselY(1,2ab1xcr)ic1BesselJ(1,2ab1xcr))y(x)x(ab1xBesselJ(0,2ab1xcr)+crBesselJ(1,2ab1xcr)ab1xBesselJ(2,2ab1xcr))2bBesselJ(1,2ab1xcr)
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
r = symbols("r") 
y = Function("y") 
ode = Eq(c*Derivative(y(x), x) - (a*x + b*y(x)**2)/(r*x**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded