1.45 problem 45
Internal
problem
ID
[8009]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
45
Date
solved
:
Monday, October 21, 2024 at 04:40:51 PM
CAS
classification
:
[_quadrature]
Solve
\begin{align*} x \sin \left (x \right ) {y^{\prime }}^{2}&=0 \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=0 \\
\tag{2} y^{\prime }&=0 \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_1 \\ y &= c_1 \end{align*}
Solving Eq. (2)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}
1.45.1 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x \sin \left (x \right ) {y^{\prime }}^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\mathit {C1} \end {array} \]
1.45.2 Maple trace
Methods for first order ODEs:
1.45.3 Maple dsolve solution
Solving time : 0.030
(sec)
Leaf size : 5
dsolve(x*sin(x)*diff(y(x),x)^2 = 0,
y(x),singsol=all)
\[
y = c_1
\]
1.45.4 Mathematica DSolve solution
Solving time : 0.003
(sec)
Leaf size : 7
DSolve[{x*Sin[x]*D[y[x],x]^2==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to c_1
\]