2.1.46 Problem 46
Internal
problem
ID
[10304]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
46
Date
solved
:
Monday, December 08, 2025 at 08:01:57 PM
CAS
classification
:
[_quadrature]
2.1.46.1 Solved by factoring the differential equation
Time used: 0.002 (sec)
\begin{align*}
y {y^{\prime }}^{2}&=0 \\
\end{align*}
Writing the ode as \begin{align*} \left (y\right )\left ({y^{\prime }}^{2}\right )&=0 \end{align*}
Therefore we need to solve the following equations
\begin{align*}
\tag{1} y &= 0 \\
\tag{2} {y^{\prime }}^{2} &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Entering zero order ode solverSolving for \(y\) from
\begin{align*} y = 0 \end{align*}
Solving gives
\begin{align*}
y &= 0 \\
\end{align*}
Solving equation (2)
Unknown ode type.
Summary of solutions found
\begin{align*}
y &= 0 \\
\end{align*}
2.1.46.2 ✓ Maple. Time used: 0.000 (sec). Leaf size: 9
ode:=y(x)*diff(y(x),x)^2 = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= 0 \\
y &= c_1 \\
\end{align*}
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right ) \left (\frac {d}{d x}y \left (x \right )\right )^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \end {array} \]
2.1.46.3 ✓ Mathematica. Time used: 0.002 (sec). Leaf size: 12
ode=y[x]*(D[y[x],x])^2==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to 0\\ y(x)&\to c_1 \end{align*}
2.1.46.4 ✓ Sympy. Time used: 0.084 (sec). Leaf size: 3
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x)*Derivative(y(x), x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1}
\]