1.46 problem 46

1.46.1 Maple step by step solution
1.46.2 Maple trace
1.46.3 Maple dsolve solution
1.46.4 Mathematica DSolve solution

Internal problem ID [8010]
Book : First order enumerated odes
Section : section 1
Problem number : 46
Date solved : Monday, October 21, 2024 at 04:40:52 PM
CAS classification : [_quadrature]

Solve

\begin{align*} y {y^{\prime }}^{2}&=0 \end{align*}

Factoring the ode gives these factors

\begin{align*} \tag{1} y &= 0 \\ \tag{2} {y^{\prime }}^{2} &= 0 \\ \end{align*}

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for \(y\) from

\begin{align*} y = 0 \end{align*}

Solving gives \(y = 0\)

Solving equation (2)

Solving for the derivative gives these ODE’s to solve

\begin{align*} \tag{1} y^{\prime }&=0 \\ \tag{2} y^{\prime }&=0 \\ \end{align*}

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {0\, dx} + c_1 \\ y &= c_1 \end{align*}

Solving Eq. (2)

Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}

1.46.1 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y {y^{\prime }}^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\mathit {C1} \end {array} \]

1.46.2 Maple trace
Methods for first order ODEs:
 
1.46.3 Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 9

dsolve(y(x)*diff(y(x),x)^2 = 0, 
       y(x),singsol=all)
 
\begin{align*} y &= 0 \\ y &= c_1 \\ \end{align*}
1.46.4 Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12

DSolve[{y[x]*(D[y[x],x])^2==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to 0 \\ y(x)\to c_1 \\ \end{align*}