2.1.49 problem 49
Internal
problem
ID
[8709]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
49
Date
solved
:
Tuesday, December 17, 2024 at 12:58:13 PM
CAS
classification
:
[_quadrature]
Solve
\begin{align*} {y^{\prime }}^{2}&=x \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=\sqrt {x} \\
\tag{2} y^{\prime }&=-\sqrt {x} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\sqrt {x}\, dx}\\ y &= \frac {2 x^{{3}/{2}}}{3} + c_1 \end{align*}
Solving Eq. (2)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-\sqrt {x}\, dx}\\ y &= -\frac {2 x^{{3}/{2}}}{3} + c_2 \end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right )^{2}=x \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y \left (x \right )=\sqrt {x}, \frac {d}{d x}y \left (x \right )=-\sqrt {x}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=\sqrt {x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \sqrt {x}d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=-\sqrt {x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int -\sqrt {x}d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=-\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=-\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{y \left (x \right )=-\frac {2 x^{{3}/{2}}}{3}+\mathit {C1} , y \left (x \right )=\frac {2 x^{{3}/{2}}}{3}+\mathit {C1} \right \} \end {array} \]
Maple trace
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`
Maple dsolve solution
Solving time : 0.040
(sec)
Leaf size : 21
dsolve(diff(y(x),x)^2 = x,
y(x),singsol=all)
\begin{align*}
y &= \frac {2 x^{{3}/{2}}}{3}+c_{1} \\
y &= -\frac {2 x^{{3}/{2}}}{3}+c_{1} \\
\end{align*}
Mathematica DSolve solution
Solving time : 0.004
(sec)
Leaf size : 33
DSolve[{(D[y[x],x])^2==x,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {2 x^{3/2}}{3}+c_1 \\
y(x)\to \frac {2 x^{3/2}}{3}+c_1 \\
\end{align*}