1.49 problem 49
Internal
problem
ID
[8013]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
49
Date
solved
:
Monday, October 21, 2024 at 04:40:54 PM
CAS
classification
:
[_quadrature]
Solve
\begin{align*} {y^{\prime }}^{2}&=x \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=\sqrt {x} \\
\tag{2} y^{\prime }&=-\sqrt {x} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\sqrt {x}\, dx}\\ y &= \frac {2 x^{{3}/{2}}}{3} + c_1 \end{align*}
Solving Eq. (2)
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-\sqrt {x}\, dx}\\ y &= -\frac {2 x^{{3}/{2}}}{3} + c_2 \end{align*}
1.49.1 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & {y^{\prime }}^{2}=x \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\sqrt {x}, y^{\prime }=-\sqrt {x}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\sqrt {x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int \sqrt {x}d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=-\sqrt {x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int -\sqrt {x}d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=-\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=-\frac {2 x^{{3}/{2}}}{3}+\textit {\_C1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{y=-\frac {2 x^{{3}/{2}}}{3}+\mathit {C1} , y=\frac {2 x^{{3}/{2}}}{3}+\mathit {C1} \right \} \end {array} \]
1.49.2 Maple trace
Methods for first order ODEs:
1.49.3 Maple dsolve solution
Solving time : 0.022
(sec)
Leaf size : 21
dsolve(diff(y(x),x)^2 = x,
y(x),singsol=all)
\begin{align*}
y &= \frac {2 x^{{3}/{2}}}{3}+c_1 \\
y &= -\frac {2 x^{{3}/{2}}}{3}+c_1 \\
\end{align*}
1.49.4 Mathematica DSolve solution
Solving time : 0.004
(sec)
Leaf size : 33
DSolve[{(D[y[x],x])^2==x,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {2 x^{3/2}}{3}+c_1 \\
y(x)\to \frac {2 x^{3/2}}{3}+c_1 \\
\end{align*}