2.1.50 Problem 50
Internal
problem
ID
[10308]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
50
Date
solved
:
Monday, January 26, 2026 at 09:36:40 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
2.1.50.1 Solved using first_order_ode_dAlembert
0.644 (sec)
Entering first order ode dAlembert solver
\begin{align*}
{y^{\prime }}^{2}&=y+x \\
\end{align*}
Let \(p=y^{\prime }\) the ode becomes \begin{align*} p^{2} = y +x \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= p^{2}-x \\
\end{align*}
This has the form \begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= -1\\ g &= p^{2} \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p +1 = 2 p p^{\prime }\left (x \right )
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p +1 = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=-1 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = 1-x \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \frac {p \left (x \right )+1}{2 p \left (x \right )}
\end{equation}
This ODE is now solved for \(p \left (x \right )\).
No inversion is needed.
Integrating gives
\begin{align*} \int \frac {2 p}{p +1}d p &= dx\\ 2 p -2 \ln \left (p +1\right )&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {p +1}{2 p}&= 0 \end{align*}
for \(p \left (x \right )\). This is because of dividing by the above earlier. This gives the following singular solution(s),
which also has to satisfy the given ODE.
\begin{align*} p \left (x \right ) = -1 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
y &= \left ({\mathrm e}^{-\operatorname {LambertW}\left (-{\mathrm e}^{-1-\frac {c_1}{2}-\frac {x}{2}}\right )-1-\frac {c_1}{2}-\frac {x}{2}}-1\right )^{2}-x \\
y &= 1-x \\
\end{align*}
Simplifying the above gives \begin{align*}
y &= 1-x \\
y &= {\left (1+\operatorname {LambertW}\left (-{\mathrm e}^{-1-\frac {c_1}{2}-\frac {x}{2}}\right )\right )}^{2}-x \\
y &= 1-x \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= 1-x \\
y &= {\left (1+\operatorname {LambertW}\left (-{\mathrm e}^{-1-\frac {c_1}{2}-\frac {x}{2}}\right )\right )}^{2}-x \\
\end{align*}
2.1.50.2 Solved using first_order_ode_parametric method
0.994 (sec)
Entering first order ode parametric solver
\begin{align*}
{y^{\prime }}^{2}&=y+x \\
\end{align*}
Let \(y^{\prime }\) be a parameter \(\lambda \). The ode becomes
\begin{align*} \lambda ^{2}-x -y = 0 \end{align*}
Isolating \(y\) gives
\begin{align*} y&=\lambda ^{2}-x\\ &=\lambda ^{2}-x\\ &=F \left (x , \lambda \right ) \end{align*}
Now we generate an ode in \(x \left (\lambda \right )\) using
\begin{align*} \frac {d}{d \lambda }x \left (\lambda \right ) &= \frac { \frac {\partial F}{\partial \lambda }} { \lambda -\frac {\partial F}{\partial x} } \\ &= \frac {2 \lambda }{\lambda +1}\\ &= \frac {2 \lambda }{\lambda +1} \end{align*}
Which is now solved for \(x\).
Entering first order ode quadrature solverSince the ode has the form \(\frac {d}{d \lambda }x \left (\lambda \right )=f(\lambda )\), then we only need to
integrate \(f(\lambda )\).
\begin{align*} \int {dx} &= \int {\frac {2 \lambda }{\lambda +1}\, d\lambda }\\ x \left (\lambda \right ) &= 2 \lambda -2 \ln \left (\lambda +1\right ) + c_1 \end{align*}
\begin{align*} x \left (\lambda \right )&= 2 \lambda -2 \ln \left (\lambda +1\right )+c_1 \end{align*}
Now that we found solution \(x\) we have two equations with parameter \(\lambda \). They are
\begin{align*}
y &= \lambda ^{2}-x \\
x &= 2 \lambda -2 \ln \left (\lambda +1\right )+c_1 \\
\end{align*}
Eliminating \(\lambda \) gives
the solution for \(y\).
Summary of solutions found
\begin{align*}
y &= \operatorname {LambertW}\left (-{\mathrm e}^{-1-\frac {x}{2}+\frac {c_1}{2}}\right )^{2}+2 \operatorname {LambertW}\left (-{\mathrm e}^{-1-\frac {x}{2}+\frac {c_1}{2}}\right )-x +1 \\
\end{align*}
2.1.50.3 ✓ Maple. Time used: 0.017 (sec). Leaf size: 22
ode:=diff(y(x),x)^2 = x+y(x);
dsolve(ode,y(x), singsol=all);
\[
y = {\left (\operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-\frac {x}{2}-1}\right )+1\right )}^{2}-x
\]
Maple trace
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right )^{2}=x +y \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y \left (x \right )=\sqrt {x +y \left (x \right )}, \frac {d}{d x}y \left (x \right )=-\sqrt {x +y \left (x \right )}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=\sqrt {x +y \left (x \right )} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=-\sqrt {x +y \left (x \right )} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]
2.1.50.4 ✓ Mathematica. Time used: 9.77 (sec). Leaf size: 100
ode=(D[y[x],x])^2==x+y[x];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to W\left (-e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^2+2 W\left (-e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right )-x+1\\ y(x)&\to W\left (e^{\frac {1}{2} (-x-2+c_1)}\right ){}^2+2 W\left (e^{\frac {1}{2} (-x-2+c_1)}\right )-x+1\\ y(x)&\to 1-x \end{align*}
2.1.50.5 ✓ Sympy. Time used: 1.887 (sec). Leaf size: 54
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x - y(x) + Derivative(y(x), x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ C_{1} + x + 2 \sqrt {x + y{\left (x \right )}} + 2 \log {\left (\sqrt {x + y{\left (x \right )}} - 1 \right )} = 0, \ C_{1} + x - 2 \sqrt {x + y{\left (x \right )}} + 2 \log {\left (\sqrt {x + y{\left (x \right )}} + 1 \right )} = 0\right ]
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(x))
('factorable', 'lie_group')