2.3.5 problem 5
Internal
problem
ID
[8738]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
5
Date
solved
:
Tuesday, December 17, 2024 at 01:01:52 PM
CAS
classification
:
[_separable]
Solve
\begin{align*} t y^{\prime }+y&=0 \end{align*}
With initial conditions
\begin{align*} y \left (x_{0} \right )&=y_{0} \end{align*}
Since initial condition is not at zero, then change of variable is used to transform the ode so
that initial condition is at zero.
\begin{align*} \tau = t -x_{0} \end{align*}
Solve
\begin{align*} \left (\tau +x_{0} \right ) y^{\prime }+y&=0 \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&=y_{0} \end{align*}
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} \tau ^{n} f \left (\tau \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (\tau \right )\) . Applying the above property to each term
of the ode gives
\begin{align*} y \left (\tau \right ) &\xrightarrow {\mathscr {L}} Y \left (s \right )\\ \left (\tau +x_{0} \right ) \left (\frac {d}{d \tau }y \left (\tau \right )\right ) &\xrightarrow {\mathscr {L}} -Y \left (s \right )-s \left (\frac {d}{d s}Y \left (s \right )\right )+x_{0} \left (s Y \left (s \right )-y \left (0\right )\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
-s Y^{\prime }+x_{0} \left (s Y-y \left (0\right )\right ) = 0
\]
Replacing \(y \left (0\right ) = y_{0}\) in the above
results in
\[
-s Y^{\prime }+x_{0} \left (s Y-y_{0} \right ) = 0
\]
The above ode in Y(s) is now solved.
In canonical form a linear first order is
\begin{align*} Y^{\prime } + q(s)Y &= p(s) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(s) &=-x_{0}\\ p(s) &=-\frac {x_{0} y_{0}}{s} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,ds}}\\ &= {\mathrm e}^{\int -x_{0} d s}\\ &= {\mathrm e}^{-x_{0} s} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}}\left ( \mu Y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}}\left ( \mu Y\right ) &= \left (\mu \right ) \left (-\frac {x_{0} y_{0}}{s}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \left (Y \,{\mathrm e}^{-x_{0} s}\right ) &= \left ({\mathrm e}^{-x_{0} s}\right ) \left (-\frac {x_{0} y_{0}}{s}\right ) \\
\mathrm {d} \left (Y \,{\mathrm e}^{-x_{0} s}\right ) &= \left (-\frac {x_{0} y_{0} {\mathrm e}^{-x_{0} s}}{s}\right )\, \mathrm {d} s \\
\end{align*}
Integrating gives
\begin{align*} Y \,{\mathrm e}^{-x_{0} s}&= \int {-\frac {x_{0} y_{0} {\mathrm e}^{-x_{0} s}}{s} \,ds} \\ &=x_{0} y_{0} \operatorname {Ei}_{1}\left (x_{0} s \right ) + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{-x_{0} s}\) gives the final solution
\[ Y = {\mathrm e}^{x_{0} s} \left (x_{0} y_{0} \operatorname {Ei}_{1}\left (x_{0} s \right )+c_1 \right ) \]
Applying inverse
Laplace transform on the above gives.
\begin{align*} y = \frac {x_{0} y_{0}}{\tau +x_{0}}+c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{x_{0} s}, s , \tau \right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = y_{0}\) and \(y^{\prime }\left (0\right ) = y_{0}\) into the above solution Gives
\[
y_{0} = c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{x_{0} s}, s , \tau \right )+y_{0}
\]
Solving for the constant \(c_1\)
from the above equation gives
\begin{align*} c_1 = 0 \end{align*}
Substituting the above back into the solution (1) gives
\[
y = \frac {x_{0} y_{0}}{\tau +x_{0}}
\]
Changing back the solution from \(\tau \) to \(t\)
using
\begin{align*} \tau = t -x_{0} \end{align*}
the solution becomes
\begin{align*} y \left (t \right ) = \frac {x_{0} y_{0}}{t} \end{align*}
Figure 2.102: Slope field plot
\(t \left (\frac {d}{d t}y \left (t \right )\right )+y \left (t \right ) = 0\)
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [t y^{\prime }+y=0, y \left (x_{0} \right )=y_{0} \right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=-\frac {1}{t} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y}d t =\int -\frac {1}{t}d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=-\ln \left (t \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {{\mathrm e}^{\mathit {C1}}}{t} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (x_{0} \right )=y_{0} \\ {} & {} & y_{0} =\frac {{\mathrm e}^{\mathit {C1}}}{x_{0}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =\ln \left (x_{0} y_{0} \right ) \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =\ln \left (x_{0} y_{0} \right )\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y=\frac {x_{0} y_{0}}{t} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=\frac {x_{0} y_{0}}{t} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful `
Maple dsolve solution
Solving time : 0.028
(sec)
Leaf size : 10
dsolve ([ t * diff ( y ( t ), t )+ y ( t ) = 0,
op ([ y ( x__0 ) = y__0])],
y(t),method=laplace)
\[
y = \frac {x_{0} y_{0}}{t}
\]
Mathematica DSolve solution
Solving time : 1.702
(sec)
Leaf size : 11
DSolve [{ t * D [ y [ t ], t ]+ y [ t ]==0, y [ x0 ]== y0 },
y[t],t,IncludeSingularSolutions-> True ]
\[
y(t)\to \frac {\text {x0} \text {y0}}{t}
\]