2.3.6 problem 6
Internal
problem
ID
[8739]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
6
Date
solved
:
Tuesday, December 17, 2024 at 01:01:52 PM
CAS
classification
:
[_separable]
Solve
\begin{align*} t y^{\prime }+y&=0 \end{align*}
Since no initial condition is explicitly given, then let
\begin{align*} y \left (0\right ) = c_1 \end{align*}
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} t^{n} f \left (t \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (t \right )\) . Applying the above property to each term
of the ode gives
\begin{align*} y &\xrightarrow {\mathscr {L}} Y \left (s \right )\\ t y^{\prime } &\xrightarrow {\mathscr {L}} -Y \left (s \right )-s \left (\frac {d}{d s}Y \left (s \right )\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
-s Y^{\prime } = 0
\]
The above ode in Y(s) is
now solved.
Since the ode has the form \(Y^{\prime }=f(s)\) , then we only need to integrate \(f(s)\) .
\begin{align*} \int {dY} &= \int {0\, ds} + c_2 \\ Y &= c_2 \end{align*}
Applying inverse Laplace transform on the above gives.
\begin{align*} y = c_2 \delta \left (t \right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = c_1\) and \(y^{\prime }\left (0\right ) = c_1\) into the above solution Gives
\[
c_1 = c_2 \delta \left (0\right )
\]
Solving for the constant \(c_2\)
from the above equation gives
\begin{align*} c_2 = \frac {c_1}{\delta \left (0\right )} \end{align*}
Substituting the above back into the solution (1) gives
\[
y = \frac {c_1 \delta \left (t \right )}{\delta \left (0\right )}
\]
Figure 2.103: Slope field plot
\(t y^{\prime }+y = 0\)
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & t y^{\prime }+y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=-\frac {1}{t} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y}d t =\int -\frac {1}{t}d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=-\ln \left (t \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {{\mathrm e}^{\mathit {C1}}}{t} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful `
Maple dsolve solution
Solving time : 0.027
(sec)
Leaf size : 8
dsolve ( t * diff ( y ( t ), t )+ y ( t ) = 0,
y(t),method=laplace)
\[
y = c_1 \delta \left (t \right )
\]
Mathematica DSolve solution
Solving time : 0.02
(sec)
Leaf size : 16
DSolve [{ t * D [ y [ t ], t ]+ y [ t ]==0,{}},
y[t],t,IncludeSingularSolutions-> True ]
\begin{align*}
y(t)\to \frac {c_1}{t} \\
y(t)\to 0 \\
\end{align*}