2.3.7 problem 7

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8740]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 7
Date solved : Tuesday, December 17, 2024 at 01:01:53 PM
CAS classification : [_separable]

Solve

\begin{align*} t y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=5 \end{align*}

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

\begin{align*} \tau = t -1 \end{align*}

Solve

\begin{align*} \left (\tau +1\right ) y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=5 \end{align*}

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

\begin{align*} \tau ^{n} f \left (\tau \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}

Where in the above \(F(s)\) is the laplace transform of \(f \left (\tau \right )\). Applying the above property to each term of the ode gives

\begin{align*} y \left (\tau \right ) &\xrightarrow {\mathscr {L}} Y \left (s \right )\\ \left (\tau +1\right ) \left (\frac {d}{d \tau }y \left (\tau \right )\right ) &\xrightarrow {\mathscr {L}} -Y \left (s \right )-s \left (\frac {d}{d s}Y \left (s \right )\right )+s Y \left (s \right )-y \left (0\right ) \end{align*}

Collecting all the terms above, the ode in Laplace domain becomes

\[ -s Y^{\prime }+s Y-y \left (0\right ) = 0 \]

Replacing \(y \left (0\right ) = 5\) in the above results in

\[ -s Y^{\prime }+s Y-5 = 0 \]

The above ode in Y(s) is now solved.

In canonical form a linear first order is

\begin{align*} Y^{\prime } + q(s)Y &= p(s) \end{align*}

Comparing the above to the given ode shows that

\begin{align*} q(s) &=-1\\ p(s) &=-\frac {5}{s} \end{align*}

The integrating factor \(\mu \) is

\begin{align*} \mu &= e^{\int {q\,ds}}\\ &= {\mathrm e}^{\int \left (-1\right )d s}\\ &= {\mathrm e}^{-s} \end{align*}

The ode becomes

\begin{align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}}\left ( \mu Y\right ) &= \mu p \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}}\left ( \mu Y\right ) &= \left (\mu \right ) \left (-\frac {5}{s}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \left (Y \,{\mathrm e}^{-s}\right ) &= \left ({\mathrm e}^{-s}\right ) \left (-\frac {5}{s}\right ) \\ \mathrm {d} \left (Y \,{\mathrm e}^{-s}\right ) &= \left (-\frac {5 \,{\mathrm e}^{-s}}{s}\right )\, \mathrm {d} s \\ \end{align*}

Integrating gives

\begin{align*} Y \,{\mathrm e}^{-s}&= \int {-\frac {5 \,{\mathrm e}^{-s}}{s} \,ds} \\ &=5 \,\operatorname {Ei}_{1}\left (s \right ) + c_1 \end{align*}

Dividing throughout by the integrating factor \({\mathrm e}^{-s}\) gives the final solution

\[ Y = {\mathrm e}^{s} \left (5 \,\operatorname {Ei}_{1}\left (s \right )+c_1 \right ) \]

Applying inverse Laplace transform on the above gives.

\begin{align*} y = \frac {5}{\tau +1}+c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{s}, s , \tau \right )\tag {1} \end{align*}

Substituting initial conditions \(y \left (0\right ) = 5\) and \(y^{\prime }\left (0\right ) = 5\) into the above solution Gives

\[ 5 = c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{s}, s , \tau \right )+5 \]

Solving for the constant \(c_1\) from the above equation gives

\begin{align*} c_1 = 0 \end{align*}

Substituting the above back into the solution (1) gives

\[ y = \frac {5}{\tau +1} \]

Changing back the solution from \(\tau \) to \(t\) using

\begin{align*} \tau = t -1 \end{align*}

the solution becomes

\begin{align*} y \left (t \right ) = \frac {5}{t} \end{align*}

(a) Solution plot
\(y \left (t \right ) = \frac {5}{t}\)

(b) Slope field plot
\(t \left (\frac {d}{d t}y \left (t \right )\right )+y \left (t \right ) = 0\)
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [t y^{\prime }+y=0, y \left (1\right )=5\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=-\frac {1}{t} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y}d t =\int -\frac {1}{t}d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=-\ln \left (t \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {{\mathrm e}^{\mathit {C1}}}{t} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (1\right )=5 \\ {} & {} & 5={\mathrm e}^{\mathit {C1}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =\ln \left (5\right ) \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =\ln \left (5\right )\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y=\frac {5}{t} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=\frac {5}{t} \end {array} \]

Maple trace
`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful`
 
Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 9

dsolve([t*diff(y(t),t)+y(t) = 0, 
        op([y(1) = 5])], 
        y(t),method=laplace)
 
\[ y = \frac {5}{t} \]
Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 10

DSolve[{t*D[y[t],t]+y[t]==0,y[1]==5}, 
       y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {5}{t} \]