2.2.37 problem 36
Internal
problem
ID
[8267]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
36
Date
solved
:
Sunday, November 10, 2024 at 03:30:58 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Solve
\begin{align*} y^{\prime \prime }-x^{2} y-x^{4}&=0 \end{align*}
Solved as second order Bessel ode
Time used: 0.598 (sec)
Writing the ode as
\begin{align*} x^{2} y^{\prime \prime }-x^{4} y = x^{6}\tag {1} \end{align*}
Let the solution be
\begin{align*} y &= y_h + y_p \end{align*}
Where \(y_h\) is the solution to the homogeneous ODE and \(y_p\) is a particular solution to the
non-homogeneous ODE. Bessel ode has the form
\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end{align*}
The generalized form of Bessel ode is given by Bowman (1958) as the following
\begin{align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end{align*}
With the standard solution
\begin{align*} y&=x^{\alpha } \left (c_1 \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_2 \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end{align*}
Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives
\begin{align*} \alpha &= {\frac {1}{2}}\\ \beta &= \frac {i}{2}\\ n &= {\frac {1}{4}}\\ \gamma &= 2 \end{align*}
Substituting all the above into (4) gives the solution as
\begin{align*} y = c_1 \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )+c_2 \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \end{align*}
Therefore the homogeneous solution \(y_h\) is
\[
y_h = c_1 \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )+c_2 \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )
\]
The particular solution \(y_p\) can be found
using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more
general and can be used when the coefficients of the ODE depend on \(x\) as well.
Let
\begin{equation}
\tag{1} y_p(x) = u_1 y_1 + u_2 y_2
\end{equation}
Where \(u_1,u_2\) to be determined, and \(y_1,y_2\) are the two basis solutions (the two linearly
independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as
\begin{align*}
y_1 &= \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \\
y_2 &= \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \\
\end{align*}
In the Variation of parameters \(u_1,u_2\) are found using
\begin{align*}
\tag{2} u_1 &= -\int \frac {y_2 f(x)}{a W(x)} \\
\tag{3} u_2 &= \int \frac {y_1 f(x)}{a W(x)} \\
\end{align*}
Where \(W(x)\) is the
Wronskian and \(a\) is the coefficient in front of \(y''\) in the given ODE. The Wronskian is given
by \(W= \begin {vmatrix} y_1 & y_{2} \\ y_{1}^{\prime } & y_{2}^{\prime } \end {vmatrix} \). Hence
\[ W = \begin {vmatrix} \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) & \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \\ \frac {d}{dx}\left (\sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )\right ) & \frac {d}{dx}\left (\sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )\right ) \end {vmatrix} \]
Which gives
\[ W = \begin {vmatrix} \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) & \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \\ \frac {\operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 \sqrt {x}}+i x^{{3}/{2}} \left (-\operatorname {BesselJ}\left (\frac {5}{4}, \frac {i x^{2}}{2}\right )-\frac {i \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 x^{2}}\right ) & \frac {\operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 \sqrt {x}}+i x^{{3}/{2}} \left (-\operatorname {BesselY}\left (\frac {5}{4}, \frac {i x^{2}}{2}\right )-\frac {i \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 x^{2}}\right ) \end {vmatrix} \]
Therefore
\[
W = \left (\sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )\right )\left (\frac {\operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 \sqrt {x}}+i x^{{3}/{2}} \left (-\operatorname {BesselY}\left (\frac {5}{4}, \frac {i x^{2}}{2}\right )-\frac {i \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 x^{2}}\right )\right ) - \left (\sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )\right )\left (\frac {\operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 \sqrt {x}}+i x^{{3}/{2}} \left (-\operatorname {BesselJ}\left (\frac {5}{4}, \frac {i x^{2}}{2}\right )-\frac {i \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{2 x^{2}}\right )\right )
\]
Which simplifies to
\[
W = -i x^{2} \left (\operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \operatorname {BesselY}\left (\frac {5}{4}, \frac {i x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \operatorname {BesselJ}\left (\frac {5}{4}, \frac {i x^{2}}{2}\right )\right )
\]
Which simplifies to
\[
W = \frac {4}{\pi }
\]
Therefore Eq. (2) becomes
\[
u_1 = -\int \frac {x^{{13}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{\frac {4 x^{2}}{\pi }}\,dx
\]
Which simplifies to
\[
u_1 = - \int \frac {x^{{9}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \pi }{4}d x
\]
Hence
\[
u_1 = -\left (\int _{0}^{x}\frac {\alpha ^{{9}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right ) \pi }{4}d \alpha \right )
\]
And Eq. (3) becomes
\[
u_2 = \int \frac {x^{{13}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )}{\frac {4 x^{2}}{\pi }}\,dx
\]
Which
simplifies to
\[
u_2 = \int \frac {x^{{9}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \pi }{4}d x
\]
Hence
\[
u_2 = \int _{0}^{x}\frac {\alpha ^{{9}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right ) \pi }{4}d \alpha
\]
Therefore the particular solution, from equation (1) is
\[
y_p(x) = -\left (\int _{0}^{x}\frac {\alpha ^{{9}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right ) \pi }{4}d \alpha \right ) \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )+\sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \left (\int _{0}^{x}\frac {\alpha ^{{9}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right ) \pi }{4}d \alpha \right )
\]
Which
simplifies to
\[
y_p(x) = -\frac {\pi \sqrt {x}\, \left (\left (\int _{0}^{x}\alpha ^{{9}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right )d \alpha \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \left (\int _{0}^{x}\alpha ^{{9}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right )d \alpha \right )\right )}{4}
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )+c_2 \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )\right ) + \left (-\frac {\pi \sqrt {x}\, \left (\left (\int _{0}^{x}\alpha ^{{9}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right )d \alpha \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \left (\int _{0}^{x}\alpha ^{{9}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right )d \alpha \right )\right )}{4}\right ) \\
\end{align*}
Will add steps showing solving for IC
soon.
Summary of solutions found
\begin{align*}
y &= c_1 \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )+c_2 \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )-\frac {\pi \sqrt {x}\, \left (\left (\int _{0}^{x}\alpha ^{{9}/{2}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right )d \alpha \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {i x^{2}}{2}\right ) \left (\int _{0}^{x}\alpha ^{{9}/{2}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {i \alpha ^{2}}{2}\right )d \alpha \right )\right )}{4} \\
\end{align*}
Maple step by step solution
Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`
Maple dsolve solution
Solving time : 0.022
(sec)
Leaf size : 124
dsolve(diff(diff(y(x),x),x)-x^2*y(x)-x^4 = 0,
y(x),singsol=all)
\[
y = -\frac {\sqrt {x}\, \left (-\frac {6 \pi ^{2} x^{5} \operatorname {hypergeom}\left (\left [\frac {5}{4}\right ], \left [\frac {3}{4}, \frac {5}{2}\right ], \frac {x^{4}}{16}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {csgn}\left (x \right )}{5}+\Gamma \left (\frac {3}{4}\right ) \left (2 x^{6} \Gamma \left (\frac {3}{4}\right ) \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}\right ], \left [\frac {5}{4}, \frac {5}{2}\right ], \frac {x^{4}}{16}\right )+\pi \left (x^{6} \Gamma \left (\frac {3}{4}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}\right ], \left [\frac {19}{8}, \frac {5}{2}\right ], \frac {x^{4}}{16}\right ) \sqrt {2}-12 \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{2} -12 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{1} \right )\right )\right )}{12 \pi \Gamma \left (\frac {3}{4}\right )}
\]
Mathematica DSolve solution
Solving time : 5.191
(sec)
Leaf size : 213
DSolve[{D[y[x],{x,2}]-x^2*y[x]-x^4==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} x\right ) \left (\int _1^x\frac {K[1]^4 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} K[1]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},K[1]\right ) \left (i \operatorname {HermiteH}\left (\frac {1}{2},i K[1]\right )+2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) K[1]\right )-\operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[1]\right )\right )}dK[1]+c_1\right )+\operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} x\right ) \left (\int _1^x\frac {K[2]^4 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} K[2]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[2]\right )+\operatorname {HermiteH}\left (-\frac {1}{2},K[2]\right ) \left (-i \operatorname {HermiteH}\left (\frac {1}{2},i K[2]\right )-2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) K[2]\right )\right )}dK[2]+c_2\right )
\]