Internal
problem
ID
[7831]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
46
Date
solved
:
Tuesday, October 22, 2024 at 02:38:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2}&=0 \end{align*}
2.47.3 Maple dsolve solution
Solving time : 0.091
(sec)
Leaf size : 74
dsolve(diff(diff(y(x),x),x)-x^2*diff(y(x),x)-x^3*y(x)-x^4-x^2 = 0,
y(x),singsol=all)
\[
y = {\mathrm e}^{-\frac {x \left (x -2\right )}{2}} \operatorname {HeunT}\left (2 \,3^{{2}/{3}}, -3, -3 \,3^{{1}/{3}}, \frac {3^{{2}/{3}} \left (x +1\right )}{3}\right ) c_2 +{\mathrm e}^{\frac {1}{3} x^{3}+\frac {1}{2} x^{2}-x} \operatorname {HeunT}\left (2 \,3^{{2}/{3}}, 3, -3 \,3^{{1}/{3}}, -\frac {3^{{2}/{3}} \left (x +1\right )}{3}\right ) c_1 -x
\]
2.47.4 Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]-x^3*y[x]-x^4-x^2==0,{}},
y[x],x,IncludeSingularSolutions->True]
Not solved