2.2.48 Problem 47

Maple
Mathematica
Sympy

Internal problem ID [8851]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 47
Date solved : Friday, April 25, 2025 at 05:14:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Maple. Time used: 0.004 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)-1/x*diff(y(x),x)-x*y(x)-x^2-1/x = 0; 
dsolve(ode,y(x), singsol=all);
 
y=x(1+c2BesselI(23,2x3/23)+c1BesselK(23,2x3/23))

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      <- Bessel successful 
   <- special function solution successful 
<- solving first the homogeneous part of the ODE successful
 

Mathematica. Time used: 0.449 (sec). Leaf size: 253
ode=D[y[x],{x,2}]-1/x*D[y[x],x]-x*y[x]-x^2-1/x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)336πGamma(13)(3AiryAiPrime(x)+3AiryBiPrime(x))1F2(13;13,23;x39)xGamma(23)+33πxGamma(13)2(3AiryAiPrime(x)AiryBiPrime(x))1F2(13;43,53;x39)Gamma(43)+33πx4Gamma(13)Gamma(43)(3AiryAiPrime(x)AiryBiPrime(x))1F2(43;53,73;x39)Gamma(73)+336πx2Gamma(23)(3AiryAiPrime(x)+3AiryBiPrime(x))1F2(23;13,53;x39)+27Gamma(13)Gamma(53)(c1AiryAiPrime(x)+c2AiryBiPrime(x))Gamma(53)27Gamma(13)
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - x*y(x) + Derivative(y(x), (x, 2)) - Derivative(y(x), x)/x - 1/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x**3 + x**2*y(x) - x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) + 1 cannot be solved by the factorable group method