4.1 problem 1

4.1.1 Maple step by step solution
4.1.2 Maple trace
4.1.3 Maple dsolve solution
4.1.4 Mathematica DSolve solution

Internal problem ID [7870]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 1
Date solved : Monday, October 21, 2024 at 04:30:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

\begin{align*} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y&=0 \end{align*}

Using series expansion around \(x=0\)

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

\[ 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

The following is summary of singularities for the above ode. Writing the ode as

\begin{align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end{align*}

Where

\begin{align*} p(x) &= -\frac {1}{2 x}\\ q(x) &= -\frac {x^{2}-1}{2 x^{2}}\\ \end{align*}
Table 53: Table \(p(x),q(x)\) singularites.
\(p(x)=-\frac {1}{2 x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=-\frac {x^{2}-1}{2 x^{2}}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be

\[ 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

Let the solution be represented as Frobenius power series of the form

\[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \]

Then

\begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*}

Substituting the above back into the ode gives

\begin{equation} \tag{1} 2 x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )-x \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (-x^{2}+1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation}

Which simplifies to

\begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r +2} a_{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation}

The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives

\begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r +2} a_{n}\right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}\left (-a_{n -2} x^{n +r}\right ) \\ \end{align*}

Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\).

\begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =2}{\sum }}\left (-a_{n -2} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation}

The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives

\[ 2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )-x^{n +r} a_{n} \left (n +r \right )+a_{n} x^{n +r} = 0 \]

When \(n = 0\) the above becomes

\[ 2 x^{r} a_{0} r \left (-1+r \right )-x^{r} a_{0} r +a_{0} x^{r} = 0 \]

Or

\[ \left (2 x^{r} r \left (-1+r \right )-x^{r} r +x^{r}\right ) a_{0} = 0 \]

Since \(a_{0}\neq 0\) then the above simplifies to

\[ \left (2 r^{2}-3 r +1\right ) x^{r} = 0 \]

Since the above is true for all \(x\) then the indicial equation becomes

\[ 2 r^{2}-3 r +1 = 0 \]

Solving for \(r\) gives the roots of the indicial equation as

\begin{align*} r_1 &= 1\\ r_2 &= {\frac {1}{2}} \end{align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes

\[ \left (2 r^{2}-3 r +1\right ) x^{r} = 0 \]

Solving for \(r\) gives the roots of the indicial equation as \(\left [1, {\frac {1}{2}}\right ]\).

Since \(r_1 - r_2 = {\frac {1}{2}}\) is not an integer, then we can construct two linearly independent solutions

\begin{align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end{align*}

Or

\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +1}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +\frac {1}{2}} \end{align*}

We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). Substituting \(n = 1\) in Eq. (2B) gives

\[ a_{1} = 0 \]

For \(2\le n\) the recursive equation is

\begin{equation} \tag{3} 2 a_{n} \left (n +r \right ) \left (n +r -1\right )-a_{n} \left (n +r \right )-a_{n -2}+a_{n} = 0 \end{equation}

Solving for \(a_{n}\) from recursive equation (4) gives

\[ a_{n} = \frac {a_{n -2}}{2 n^{2}+4 n r +2 r^{2}-3 n -3 r +1}\tag {4} \]

Which for the root \(r = 1\) becomes

\[ a_{n} = \frac {a_{n -2}}{2 n^{2}+n}\tag {5} \]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 1\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives

\[ a_{2}=\frac {1}{2 r^{2}+5 r +3} \]

Which for the root \(r = 1\) becomes

\[ a_{2}={\frac {1}{10}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{10}\)

For \(n = 3\), using the above recursive equation gives

\[ a_{3}=0 \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{10}\)
\(a_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives

\[ a_{4}=\frac {1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r +63} \]

Which for the root \(r = 1\) becomes

\[ a_{4}={\frac {1}{360}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{10}\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(\frac {1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r +63}\) \(\frac {1}{360}\)

For \(n = 5\), using the above recursive equation gives

\[ a_{5}=0 \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{10}\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(\frac {1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r +63}\) \(\frac {1}{360}\)
\(a_{5}\) \(0\) \(0\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is

\begin{align*} y_{1}\left (x \right )&= x \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x \left (1+\frac {x^{2}}{10}+\frac {x^{4}}{360}+O\left (x^{6}\right )\right ) \end{align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). Substituting \(n = 1\) in Eq. (2B) gives

\[ b_{1} = 0 \]

For \(2\le n\) the recursive equation is

\begin{equation} \tag{3} 2 b_{n} \left (n +r \right ) \left (n +r -1\right )-b_{n} \left (n +r \right )-b_{n -2}+b_{n} = 0 \end{equation}

Solving for \(b_{n}\) from recursive equation (4) gives

\[ b_{n} = \frac {b_{n -2}}{2 n^{2}+4 n r +2 r^{2}-3 n -3 r +1}\tag {4} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ b_{n} = \frac {b_{n -2}}{n \left (2 n -1\right )}\tag {5} \]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = {\frac {1}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives

\[ b_{2}=\frac {1}{2 r^{2}+5 r +3} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ b_{2}={\frac {1}{6}} \]

And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{6}\)

For \(n = 3\), using the above recursive equation gives

\[ b_{3}=0 \]

And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{6}\)
\(b_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives

\[ b_{4}=\frac {1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r +63} \]

Which for the root \(r = {\frac {1}{2}}\) becomes

\[ b_{4}={\frac {1}{168}} \]

And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{6}\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(\frac {1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r +63}\) \(\frac {1}{168}\)

For \(n = 5\), using the above recursive equation gives

\[ b_{5}=0 \]

And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1}{2 r^{2}+5 r +3}\) \(\frac {1}{6}\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(\frac {1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r +63}\) \(\frac {1}{168}\)
\(b_{5}\) \(0\) \(0\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is

\begin{align*} y_{2}\left (x \right )&= x \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= \sqrt {x}\, \left (1+\frac {x^{2}}{6}+\frac {x^{4}}{168}+O\left (x^{6}\right )\right ) \end{align*}

Therefore the homogeneous solution is

\begin{align*} y_h(x) &= c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \\ &= c_1 x \left (1+\frac {x^{2}}{10}+\frac {x^{4}}{360}+O\left (x^{6}\right )\right ) + c_2 \sqrt {x}\, \left (1+\frac {x^{2}}{6}+\frac {x^{4}}{168}+O\left (x^{6}\right )\right ) \\ \end{align*}

Hence the final solution is

\begin{align*} y &= y_h \\ &= c_1 x \left (1+\frac {x^{2}}{10}+\frac {x^{4}}{360}+O\left (x^{6}\right )\right )+c_2 \sqrt {x}\, \left (1+\frac {x^{2}}{6}+\frac {x^{4}}{168}+O\left (x^{6}\right )\right ) \\ \end{align*}
4.1.1 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (\frac {d}{d x}y^{\prime }\right )-x y^{\prime }+\left (-x^{2}+1\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {\left (x^{2}-1\right ) y}{2 x^{2}}+\frac {y^{\prime }}{2 x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-\frac {y^{\prime }}{2 x}-\frac {\left (x^{2}-1\right ) y}{2 x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {1}{2 x}, P_{3}\left (x \right )=-\frac {x^{2}-1}{2 x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-\frac {1}{2} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{2} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (\frac {d}{d x}y^{\prime }\right )-x y^{\prime }+\left (-x^{2}+1\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (-1+2 r \right ) \left (-1+r \right ) x^{r}+a_{1} \left (1+2 r \right ) r \,x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k} \left (2 k +2 r -1\right ) \left (k +r -1\right )-a_{k -2}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (-1+2 r \right ) \left (-1+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{1, \frac {1}{2}\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (1+2 r \right ) r =0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 2 \left (k +r -1\right ) \left (k +r -\frac {1}{2}\right ) a_{k}-a_{k -2}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & 2 \left (k +1+r \right ) \left (k +\frac {3}{2}+r \right ) a_{k +2}-a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=\frac {a_{k}}{\left (k +1+r \right ) \left (2 k +3+2 r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =1 \\ {} & {} & a_{k +2}=\frac {a_{k}}{\left (k +2\right ) \left (2 k +5\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}, a_{k +2}=\frac {a_{k}}{\left (k +2\right ) \left (2 k +5\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & a_{k +2}=\frac {a_{k}}{\left (k +\frac {3}{2}\right ) \left (2 k +4\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{2}}, a_{k +2}=\frac {a_{k}}{\left (k +\frac {3}{2}\right ) \left (2 k +4\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {1}{2}}\right ), a_{k +2}=\frac {a_{k}}{\left (k +2\right ) \left (2 k +5\right )}, a_{1}=0, b_{k +2}=\frac {b_{k}}{\left (k +\frac {3}{2}\right ) \left (2 k +4\right )}, b_{1}=0\right ] \end {array} \]

4.1.2 Maple trace
Methods for second order ODEs:
 
4.1.3 Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 33

dsolve(2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+(-x^2+1)*y(x) = 0,y(x), 
       series,x=0)
 
\[ y = c_1 \sqrt {x}\, \left (1+\frac {1}{6} x^{2}+\frac {1}{168} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 x \left (1+\frac {1}{10} x^{2}+\frac {1}{360} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) \]
4.1.4 Mathematica DSolve solution

Solving time : 0.008 (sec)
Leaf size : 48

AsymptoticDSolveValue[{2*x^2*D[y[x],{x,2}] - x*D[y[x],x] + (1-x^2 )*y[x] ==0,{}}, 
       y[x],{x,0,5}]
 
\[ y(x)\to c_1 x \left (\frac {x^4}{360}+\frac {x^2}{10}+1\right )+c_2 \sqrt {x} \left (\frac {x^4}{168}+\frac {x^2}{6}+1\right ) \]