ID |
problem |
ODE |
1 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0\) |
|
2 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1\) |
|
3 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x +1\) |
|
4 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x\) |
|
5 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+x +1\) |
|
6 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}\) |
|
7 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+1\) |
|
8 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{4}\) |
|
9 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right )\) |
|
10 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right )+1\) |
|
11 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \sin \left (x \right )\) |
|
12 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right )\) |
|
13 |
\(x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0\) |
|
14 |
\(\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0\) |
|
15 |
\(\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0\) |
|
16 |
\(\left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0\) |
|
17 |
\(x y^{\prime \prime }+2 y^{\prime }+x y = 0\) |
|
18 |
\(2 x^{2} y^{\prime \prime }+3 y^{\prime } x -x y = x^{2}+2 x\) |
|
19 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1\) |
|
20 |
\(2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = 1\) |
|
21 |
\(y^{\prime \prime }+\left (x -6\right ) y = 0\) |
|
22 |
\(x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0\) |
|
23 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right )\) |
|
24 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \cos \left (x \right )\) |
|
24 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right )\) |
|
24 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )\) |
|
24 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2}\) |
|
24 |
\(2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \ln \left (x \right )\) |
|
25 |
\(2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0\) |
|
26 |
\(x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0\) |
|
27 |
\(x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0\) |
|
28 |
\({y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4}\) |
|
29 |
\(\left (y-2 y^{\prime } x \right )^{2} = {y^{\prime }}^{3}\) |
|
31 |
\(x^{2} y^{\prime \prime }+y = 0\) |
|
32 |
\(x y^{\prime \prime }+y^{\prime }-y = 0\) |
|
33 |
\(4 x y^{\prime \prime }+2 y^{\prime }+y = 0\) |
|
34 |
\(x y^{\prime \prime }+y^{\prime }-y = 0\) |
|
35 |
\(x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0\) |
|
36 |
\(x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0\) |
|
37 |
\(x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0\) |
|
38 |
\(2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0\) |
|
39 |
\(2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y = 0\) |
|
40 |
\(2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = \sin \left (x \right )\) |
|
41 |
\(2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = x \sin \left (x \right )\) |
|
42 |
\(2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = \sin \left (x \right ) \cos \left (x \right )\) |
|
43 |
\(2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = x^{3}+x \sin \left (x \right )\) |
|
44 |
\(\cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -x y = 0\) |
|
45 |
\(x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0\) |
|
46 |
\(x^{2} y^{\prime \prime }+y^{\prime } x -x y = 0\) |
|
47 |
\(x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0\) |
|
48 |
\(\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y = 0\) |
|
49 |
\(x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0\) |
|
50 |
\(x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y = 0\) |
|
51 |
\(x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y = 0\) |
|
52 |
\(x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0\) |
|
53 |
\(x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0\) |
|
54 |
\(x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0\) |
|
55 |
\(2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0\) |
|
56 |
\(2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0\) |
|
57 |
\(x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0\) |
|
58 |
\(x^{2} y^{\prime \prime }-x y = 0\) |
|
59 |
\(\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x}\) |
|
60 |
\(y^{\prime } = y \left (1-y^{2}\right )\) |
|
61 |
\(\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x}\) |
|
62 |
\(\frac {x y^{\prime \prime }}{1-x}+x y = 0\) |
|
63 |
\(\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right )\) |
|
64 |
\(\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0\) |
|
65 |
\(y^{\prime \prime } = \left (x^{2}+3\right ) y\) |
|
66 |
\(y^{\prime \prime }+\left (x -1\right ) y = 0\) |
|
67 |
\([x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+2 t +1, y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+3 t -1]\) |
|
68 |
\(y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right )\) |
|
69 |
\(y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0\) |
|