2.4.16 problem 16
Internal
problem
ID
[8331]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
16
Date
solved
:
Sunday, November 10, 2024 at 03:38:38 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Solve
\begin{align*} \left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y&=0 \end{align*}
Using series expansion around \(x=0\)
Solving ode using Taylor series method. This gives review on how the Taylor series method
works for solving second order ode.
Let
\[ y^{\prime \prime }=f\left ( x,y,y^{\prime }\right ) \]
Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to \(0\) by change
of variables) and assuming \(f\left ( x,y,y^{\prime }\right ) \) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let
initial conditions be \(y\left ( x_{0}\right ) =y_{0}\) and \(y^{\prime }\left ( x_{0}\right ) =y_{0}^{\prime }\). Using Taylor series gives
\begin{align*} y\left ( x\right ) & =y\left ( x_{0}\right ) +\left ( x-x_{0}\right ) y^{\prime }\left ( x_{0}\right ) +\frac {\left ( x-x_{0}\right ) ^{2}}{2}y^{\prime \prime }\left ( x_{0}\right ) +\frac {\left ( x-x_{0}\right ) ^{3}}{3!}y^{\prime \prime \prime }\left ( x_{0}\right ) +\cdots \\ & =y_{0}+xy_{0}^{\prime }+\frac {x^{2}}{2}\left . f\right \vert _{x_{0},y_{0},y_{0}^{\prime }}+\frac {x^{3}}{3!}\left . f^{\prime }\right \vert _{x_{0},y_{0},y_{0}^{\prime }}+\cdots \\ & =y_{0}+xy_{0}^{\prime }+\sum _{n=0}^{\infty }\frac {x^{n+2}}{\left ( n+2\right ) !}\left . \frac {d^{n}f}{dx^{n}}\right \vert _{x_{0},y_{0},y_{0}^{\prime }}\end{align*}
But
\begin{align} \frac {df}{dx} & =\frac {\partial f}{\partial x}\frac {dx}{dx}+\frac {\partial f}{\partial y}\frac {dy}{dx}+\frac {\partial f}{\partial y^{\prime }}\frac {dy^{\prime }}{dx}\tag {1}\\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}y^{\prime \prime }\\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}f\\ \frac {d^{2}f}{dx^{2}} & =\frac {d}{dx}\left ( \frac {df}{dx}\right ) \nonumber \\ & =\frac {\partial }{\partial x}\left ( \frac {df}{dx}\right ) +\frac {\partial }{\partial y}\left ( \frac {df}{dx}\right ) y^{\prime }+\frac {\partial }{\partial y^{\prime }}\left ( \frac {df}{dx}\right ) f\tag {2}\\ \frac {d^{3}f}{dx^{3}} & =\frac {d}{dx}\left ( \frac {d^{2}f}{dx^{2}}\right ) \nonumber \\ & =\frac {\partial }{\partial x}\left ( \frac {d^{2}f}{dx^{2}}\right ) +\left ( \frac {\partial }{\partial y}\frac {d^{2}f}{dx^{2}}\right ) y^{\prime }+\frac {\partial }{\partial y^{\prime }}\left ( \frac {d^{2}f}{dx^{2}}\right ) f\tag {3}\\ & \vdots \nonumber \end{align}
And so on. Hence if we name \(F_{0}=f\left ( x,y,y^{\prime }\right ) \) then the above can be written as
\begin{align} F_{0} & =f\left ( x,y,y^{\prime }\right ) \tag {4}\\ F_{1} & =\frac {df}{dx}\nonumber \\ & =\frac {dF_{0}}{dx}\nonumber \\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}y^{\prime \prime }\nonumber \\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}f\tag {5}\\ & =\frac {\partial F_{0}}{\partial x}+\frac {\partial F_{0}}{\partial y}y^{\prime }+\frac {\partial F_{0}}{\partial y^{\prime }}F_{0}\nonumber \\ F_{2} & =\frac {d}{dx}\left ( \frac {d}{dx}f\right ) \nonumber \\ & =\frac {d}{dx}\left ( F_{1}\right ) \nonumber \\ & =\frac {\partial }{\partial x}F_{1}+\left ( \frac {\partial F_{1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{1}}{\partial y^{\prime }}\right ) y^{\prime \prime }\nonumber \\ & =\frac {\partial }{\partial x}F_{1}+\left ( \frac {\partial F_{1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{1}}{\partial y^{\prime }}\right ) F_{0}\nonumber \\ & \vdots \nonumber \\ F_{n} & =\frac {d}{dx}\left ( F_{n-1}\right ) \nonumber \\ & =\frac {\partial }{\partial x}F_{n-1}+\left ( \frac {\partial F_{n-1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{n-1}}{\partial y^{\prime }}\right ) y^{\prime \prime }\nonumber \\ & =\frac {\partial }{\partial x}F_{n-1}+\left ( \frac {\partial F_{n-1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{n-1}}{\partial y^{\prime }}\right ) F_{0} \tag {6}\end{align}
Therefore (6) can be used from now on along with
\begin{equation} y\left ( x\right ) =y_{0}+xy_{0}^{\prime }+\sum _{n=0}^{\infty }\frac {x^{n+2}}{\left ( n+2\right ) !}\left . F_{n}\right \vert _{x_{0},y_{0},y_{0}^{\prime }} \tag {7}\end{equation}
To find \(y\left ( x\right ) \) series solution around \(x=0\). Hence
\begin{align*} F_0 &= -\frac {\cos \left (x \right ) y^{\prime }-3 x y}{\left (x +1\right ) \left (3 x -1\right )}\\ F_1 &= \frac {d F_0}{dx} \\ &= \frac {\partial F_{0}}{\partial x}+ \frac {\partial F_{0}}{\partial y} y^{\prime }+ \frac {\partial F_{0}}{\partial y^{\prime }} F_0 \\ &= \frac {\left (\cos \left (x \right )^{2}+\left (6 x +2\right ) \cos \left (x \right )+9 \left (x +\frac {\sin \left (x \right )}{3}\right ) \left (x +1\right ) \left (x -\frac {1}{3}\right )\right ) y^{\prime }-9 y x^{2}-3 \cos \left (x \right ) y x -3 y}{\left (x +1\right )^{2} \left (3 x -1\right )^{2}}\\ F_2 &= \frac {d F_1}{dx} \\ &= \frac {\partial F_{1}}{\partial x}+ \frac {\partial F_{1}}{\partial y} y^{\prime }+ \frac {\partial F_{1}}{\partial y^{\prime }} F_1 \\ &= \frac {\left (-\cos \left (x \right )^{3}+\left (-18 x -6\right ) \cos \left (x \right )^{2}+\left (\left (-9 x^{2}-6 x +3\right ) \sin \left (x \right )+9 x^{4}-6 x^{3}-68 x^{2}-34 x -13\right ) \cos \left (x \right )-54 \left (\left (\frac {2 x}{3}+\frac {2}{9}\right ) \sin \left (x \right )+x^{2}+\frac {1}{3}\right ) \left (x +1\right ) \left (x -\frac {1}{3}\right )\right ) y^{\prime }+27 y \left (\frac {\cos \left (x \right )^{2} x}{9}+\left (\frac {5}{3} x^{2}+\frac {4}{9} x +\frac {1}{9}\right ) \cos \left (x \right )+\left (\frac {2}{3} x^{3}+\frac {4}{9} x^{2}-\frac {2}{9} x \right ) \sin \left (x \right )+x^{4}+\frac {8 x^{3}}{3}-\frac {x^{2}}{3}+2 x +\frac {4}{9}\right )}{\left (x +1\right )^{3} \left (3 x -1\right )^{3}}\\ F_3 &= \frac {d F_2}{dx} \\ &= \frac {\partial F_{2}}{\partial x}+ \frac {\partial F_{2}}{\partial y} y^{\prime }+ \frac {\partial F_{2}}{\partial y^{\prime }} F_2 \\ &= \frac {\left (\cos \left (x \right )^{4}+\left (36 x +12\right ) \cos \left (x \right )^{3}+\left (\left (18 x^{2}+12 x -6\right ) \sin \left (x \right )-63 x^{4}-57 x^{3}+356 x^{2}+235 x +61\right ) \cos \left (x \right )^{2}+\left (\left (252 x^{3}+252 x^{2}-28 x -28\right ) \sin \left (x \right )-162 x^{5}+81 x^{4}+918 x^{3}+708 x^{2}+516 x +99\right ) \cos \left (x \right )-27 \left (\left (x^{4}-\frac {8}{3} x^{3}-\frac {188}{9} x^{2}-\frac {100}{9} x -\frac {41}{9}\right ) \sin \left (x \right )-3 x^{4}-20 x^{3}-\frac {56 x}{3}-\frac {11}{3}\right ) \left (x +1\right ) \left (x -\frac {1}{3}\right )\right ) y^{\prime }+81 y \left (-\frac {x \cos \left (x \right )^{3}}{27}+\left (-\frac {11}{9} x^{2}-\frac {10}{27} x -\frac {1}{27}\right ) \cos \left (x \right )^{2}+\left (\left (-\frac {5}{9} x^{3}-\frac {10}{27} x^{2}+\frac {5}{27} x \right ) \sin \left (x \right )+x^{5}+\frac {2 x^{4}}{3}-\frac {28 x^{3}}{3}-\frac {44 x^{2}}{9}-\frac {25 x}{9}-\frac {10}{27}\right ) \cos \left (x \right )+\left (-5 x^{4}-\frac {14}{3} x^{3}+\frac {4}{9} x^{2}+\frac {2}{9} x +\frac {1}{9}\right ) \sin \left (x \right )-4 x^{5}-\frac {26 x^{4}}{3}-\frac {116 x^{2}}{9}-\frac {44 x}{9}-\frac {14}{9}\right )}{\left (x +1\right )^{4} \left (3 x -1\right )^{4}}\\ F_4 &= \frac {d F_3}{dx} \\ &= \frac {\partial F_{3}}{\partial x}+ \frac {\partial F_{3}}{\partial y} y^{\prime }+ \frac {\partial F_{3}}{\partial y^{\prime }} F_3 \\ &= \frac {\left (-\cos \left (x \right )^{5}+\left (-60 x -20\right ) \cos \left (x \right )^{4}+\left (\left (-30 x^{2}-20 x +10\right ) \sin \left (x \right )+225 x^{4}+264 x^{3}-1154 x^{2}-808 x -175\right ) \cos \left (x \right )^{3}+\left (\left (-900 x^{3}-900 x^{2}+100 x +100\right ) \sin \left (x \right )+2430 x^{5}+2997 x^{4}-6912 x^{3}-7650 x^{2}-4134 x -763\right ) \cos \left (x \right )^{2}+\left (\left (405 x^{6}+405 x^{5}-6615 x^{4}-8610 x^{3}-1845 x^{2}+565 x +415\right ) \sin \left (x \right )-81 x^{8}+351 x^{7}+3699 x^{6}-987 x^{5}-15067 x^{4}-16519 x^{3}-17271 x^{2}-6637 x -1216\right ) \cos \left (x \right )+648 \left (x -\frac {1}{3}\right ) \left (\left (x^{5}-\frac {10}{3} x^{4}-\frac {293}{18} x^{3}-\frac {655}{54} x^{2}-\frac {503}{54} x -\frac {109}{54}\right ) \sin \left (x \right )-\frac {9 x^{5}}{4}-\frac {21 x^{4}}{2}-\frac {5 x^{3}}{3}-\frac {121 x^{2}}{6}-\frac {817 x}{108}-\frac {58}{27}\right ) \left (x +1\right )\right ) y^{\prime }-324 \left (-\frac {\cos \left (x \right )^{4} x}{108}+\left (-\frac {19}{36} x^{2}-\frac {1}{6} x -\frac {1}{108}\right ) \cos \left (x \right )^{3}+\left (\left (-\frac {1}{4} x^{3}-\frac {1}{6} x^{2}+\frac {1}{12} x \right ) \sin \left (x \right )+\frac {59 x^{4}}{36}-\frac {485 x^{3}}{54}-\frac {617 x^{2}}{108}-\frac {67 x}{36}+\frac {17 x^{5}}{12}-\frac {1}{6}\right ) \cos \left (x \right )^{2}+\left (\left (\frac {7}{108}-\frac {25}{4} x^{4}-\frac {109}{18} x^{3}+\frac {17}{27} x^{2}+\frac {1}{2} x \right ) \sin \left (x \right )+\frac {27 x^{5}}{4}-\frac {83 x^{4}}{2}-\frac {307 x^{3}}{9}-\frac {94 x^{2}}{3}-\frac {39 x}{4}+\frac {15 x^{6}}{2}-\frac {38}{27}\right ) \cos \left (x \right )+\left (x^{5}-\frac {1}{6} x^{4}-\frac {245}{9} x^{3}-\frac {251}{18} x^{2}-\frac {77}{9} x -\frac {10}{9}\right ) \left (x -\frac {1}{3}\right ) \left (x +1\right ) \sin \left (x \right )-\frac {13}{3}-\frac {29 x^{6}}{2}-\frac {3 x^{7}}{4}-\frac {55 x^{5}}{2}-\frac {77 x^{4}}{9}-\frac {7625 x^{3}}{108}-\frac {2021 x^{2}}{54}-\frac {617 x}{27}\right ) y}{\left (x +1\right )^{5} \left (3 x -1\right )^{5}} \end{align*}
And so on. Evaluating all the above at initial conditions \(x = 0\) and \(y \left (0\right ) = y \left (0\right )\) and \(y^{\prime }\left (0\right ) = y^{\prime }\left (0\right )\) gives
\begin{align*} F_0 &= y^{\prime }\left (0\right )\\ F_1 &= 3 y^{\prime }\left (0\right )-3 y \left (0\right )\\ F_2 &= 14 y^{\prime }\left (0\right )-15 y \left (0\right )\\ F_3 &= 140 y^{\prime }\left (0\right )-159 y \left (0\right )\\ F_4 &= 1711 y^{\prime }\left (0\right )-1917 y \left (0\right ) \end{align*}
Substituting all the above in (7) and simplifying gives the solution as
\[
y = \left (1-\frac {1}{2} x^{3}-\frac {5}{8} x^{4}-\frac {53}{40} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{2} x^{3}+\frac {7}{12} x^{4}+\frac {7}{6} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right )
\]
Since the expansion
point \(x = 0\) is an ordinary point, then this can also be solved using the standard power series
method. The ode is normalized to be
\[ \left (3 x^{2}+2 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]
Let the solution be represented as power series of the
form
\[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n} \]
Then
\begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2} \end{align*}
Substituting the above back into the ode gives
\begin{align*} \left (3 x^{2}+2 x -1\right ) \left (\moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2}\right )+\cos \left (x \right ) \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )-3 x \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right ) = 0\tag {1} \end{align*}
Expanding \(\cos \left (x \right )\) as Taylor series around \(x=0\) and keeping only the first \(6\) terms gives
\begin{align*} \cos \left (x \right ) &= 1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{720} x^{6} + \dots \\ &= 1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{720} x^{6} \end{align*}
Hence the ODE in Eq (1) becomes
\[
\left (3 x^{2}+2 x -1\right ) \left (\moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2}\right )+\left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{720} x^{6}\right ) \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )-3 x \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right ) = 0
\]
Expanding the second term in (1) gives
\[
\left (3 x^{2}+2 x -1\right ) \left (\moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2}\right )+\left (1\eslowast \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )\right )-\frac {x^{2}}{2}\eslowast \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )+\frac {x^{4}}{24}\eslowast \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )-\frac {x^{6}}{720}\eslowast \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )-3 x \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right ) = 0
\]
Which simplifies
to
\begin{equation}
\tag{2} \left (\moverset {\infty }{\munderset {n =2}{\sum }}3 x^{n} a_{n} n \left (n -1\right )\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}2 n \,x^{n -1} a_{n} \left (n -1\right )\right )+\moverset {\infty }{\munderset {n =2}{\sum }}\left (-n \left (n -1\right ) a_{n} x^{n -2}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-\frac {n \,x^{1+n} a_{n}}{2}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}\frac {n \,x^{n +3} a_{n}}{24}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-\frac {n \,x^{n +5} a_{n}}{720}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-3 x^{1+n} a_{n}\right ) = 0
\end{equation}
The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each
summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power
and the corresponding index gives
\begin{align*}
\moverset {\infty }{\munderset {n =2}{\sum }}2 n \,x^{n -1} a_{n} \left (n -1\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}2 \left (1+n \right ) a_{1+n} n \,x^{n} \\
\moverset {\infty }{\munderset {n =2}{\sum }}\left (-n \left (n -1\right ) a_{n} x^{n -2}\right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (-\left (n +2\right ) a_{n +2} \left (1+n \right ) x^{n}\right ) \\
\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1} &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (1+n \right ) a_{1+n} x^{n} \\
\moverset {\infty }{\munderset {n =1}{\sum }}\left (-\frac {n \,x^{1+n} a_{n}}{2}\right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}\left (-\frac {\left (n -1\right ) a_{n -1} x^{n}}{2}\right ) \\
\moverset {\infty }{\munderset {n =1}{\sum }}\frac {n \,x^{n +3} a_{n}}{24} &= \moverset {\infty }{\munderset {n =4}{\sum }}\frac {\left (n -3\right ) a_{n -3} x^{n}}{24} \\
\moverset {\infty }{\munderset {n =1}{\sum }}\left (-\frac {n \,x^{n +5} a_{n}}{720}\right ) &= \moverset {\infty }{\munderset {n =6}{\sum }}\left (-\frac {\left (n -5\right ) a_{n -5} x^{n}}{720}\right ) \\
\moverset {\infty }{\munderset {n =0}{\sum }}\left (-3 x^{1+n} a_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-3 a_{n -1} x^{n}\right ) \\
\end{align*}
Substituting all the above in Eq (2) gives the following
equation where now all powers of \(x\) are the same and equal to \(n\).
\begin{equation}
\tag{3} \left (\moverset {\infty }{\munderset {n =2}{\sum }}3 x^{n} a_{n} n \left (n -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}2 \left (1+n \right ) a_{1+n} n \,x^{n}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-\left (n +2\right ) a_{n +2} \left (1+n \right ) x^{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (1+n \right ) a_{1+n} x^{n}\right )+\moverset {\infty }{\munderset {n =2}{\sum }}\left (-\frac {\left (n -1\right ) a_{n -1} x^{n}}{2}\right )+\left (\moverset {\infty }{\munderset {n =4}{\sum }}\frac {\left (n -3\right ) a_{n -3} x^{n}}{24}\right )+\moverset {\infty }{\munderset {n =6}{\sum }}\left (-\frac {\left (n -5\right ) a_{n -5} x^{n}}{720}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-3 a_{n -1} x^{n}\right ) = 0
\end{equation}
\(n=0\) gives
\[
-2 a_{2}+a_{1}=0
\]
\[
a_{2} = \frac {a_{1}}{2}
\]
\(n=1\) gives
\[
6 a_{2}-6 a_{3}-3 a_{0}=0
\]
Which
after substituting earlier equations, simplifies to
\[
a_{3} = -\frac {a_{0}}{2}+\frac {a_{1}}{2}
\]
\(n=2\) gives
\[
6 a_{2}+15 a_{3}-12 a_{4}-\frac {7 a_{1}}{2}=0
\]
Which after substituting
earlier equations, simplifies to
\[
a_{4} = -\frac {5 a_{0}}{8}+\frac {7 a_{1}}{12}
\]
\(n=3\) gives
\[
18 a_{3}+28 a_{4}-20 a_{5}-4 a_{2} = 0
\]
Which after substituting earlier equations,
simplifies to
\[
-\frac {53 a_{0}}{2}+\frac {70 a_{1}}{3}-20 a_{5} = 0
\]
Or
\[
a_{5} = -\frac {53 a_{0}}{40}+\frac {7 a_{1}}{6}
\]
\(n=4\) gives
\[
36 a_{4}+45 a_{5}-30 a_{6}-\frac {9 a_{3}}{2}+\frac {a_{1}}{24}=0
\]
Which after substituting earlier equations, simplifies to
\[
a_{6} = -\frac {213 a_{0}}{80}+\frac {1711 a_{1}}{720}
\]
\(n=5\) gives
\[
60 a_{5}+66 a_{6}-42 a_{7}-5 a_{4}+\frac {a_{2}}{12} = 0
\]
Which after substituting earlier equations, simplifies to
\[
-\frac {2521 a_{0}}{10}+\frac {6719 a_{1}}{30}-42 a_{7} = 0
\]
Or
\[
a_{7} = -\frac {2521 a_{0}}{420}+\frac {6719 a_{1}}{1260}
\]
For \(6\le n\), the
recurrence equation is
\begin{equation}
\tag{4} 3 n a_{n} \left (n -1\right )+2 \left (1+n \right ) a_{1+n} n -\left (n +2\right ) a_{n +2} \left (1+n \right )+\left (1+n \right ) a_{1+n}-\frac {\left (n -1\right ) a_{n -1}}{2}+\frac {\left (n -3\right ) a_{n -3}}{24}-\frac {\left (n -5\right ) a_{n -5}}{720}-3 a_{n -1} = 0
\end{equation}
Solving for \(a_{n +2}\), gives
\begin{align*}
\tag{5} a_{n +2}&= \frac {2160 n^{2} a_{n}+1440 n^{2} a_{1+n}-2160 n a_{n}+2160 n a_{1+n}-n a_{n -5}+30 n a_{n -3}-360 n a_{n -1}+720 a_{1+n}+5 a_{n -5}-90 a_{n -3}-1800 a_{n -1}}{720 \left (n +2\right ) \left (1+n \right )} \\
&= \frac {\left (2160 n^{2}-2160 n \right ) a_{n}}{720 \left (n +2\right ) \left (1+n \right )}+\frac {\left (1440 n^{2}+2160 n +720\right ) a_{1+n}}{720 \left (n +2\right ) \left (1+n \right )}+\frac {\left (-n +5\right ) a_{n -5}}{720 \left (n +2\right ) \left (1+n \right )}+\frac {\left (30 n -90\right ) a_{n -3}}{720 \left (n +2\right ) \left (1+n \right )}+\frac {\left (-360 n -1800\right ) a_{n -1}}{720 \left (n +2\right ) \left (1+n \right )} \\
\end{align*}
And so on. Therefore the solution is
\begin{align*} y &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\\ &= a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} + \dots \end{align*}
Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y = a_{0}+a_{1} x +\frac {a_{1} x^{2}}{2}+\left (-\frac {a_{0}}{2}+\frac {a_{1}}{2}\right ) x^{3}+\left (-\frac {5 a_{0}}{8}+\frac {7 a_{1}}{12}\right ) x^{4}+\left (-\frac {53 a_{0}}{40}+\frac {7 a_{1}}{6}\right ) x^{5}+\dots
\]
Collecting terms, the solution
becomes
\begin{equation}
\tag{3} y = \left (1-\frac {1}{2} x^{3}-\frac {5}{8} x^{4}-\frac {53}{40} x^{5}\right ) a_{0}+\left (x +\frac {1}{2} x^{2}+\frac {1}{2} x^{3}+\frac {7}{12} x^{4}+\frac {7}{6} x^{5}\right ) a_{1}+O\left (x^{6}\right )
\end{equation}
At \(x = 0\) the solution above becomes
\[
y = \left (1-\frac {1}{2} x^{3}-\frac {5}{8} x^{4}-\frac {53}{40} x^{5}\right ) c_1 +\left (x +\frac {1}{2} x^{2}+\frac {1}{2} x^{3}+\frac {7}{12} x^{4}+\frac {7}{6} x^{5}\right ) c_2 +O\left (x^{6}\right )
\]
Maple step by step solution
Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 5
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 5
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]
Maple dsolve solution
Solving time : 0.007
(sec)
Leaf size : 54
dsolve((x+1)*(3*x-1)*diff(diff(y(x),x),x)+diff(y(x),x)*cos(x)-3*x*y(x) = 0,y(x),
series,x=0)
\[
y = \left (1-\frac {1}{2} x^{3}-\frac {5}{8} x^{4}-\frac {53}{40} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{2} x^{3}+\frac {7}{12} x^{4}+\frac {7}{6} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right )
\]
Mathematica DSolve solution
Solving time : 0.004
(sec)
Leaf size : 63
AsymptoticDSolveValue[{(x+1)*(3*x-1)*D[y[x],{x,2}]+Cos[x]*D[y[x],x]-3*x*y[x]==0,{}},
y[x],{x,0,5}]
\[
y(x)\to c_1 \left (-\frac {53 x^5}{40}-\frac {5 x^4}{8}-\frac {x^3}{2}+1\right )+c_2 \left (\frac {7 x^5}{6}+\frac {7 x^4}{12}+\frac {x^3}{2}+\frac {x^2}{2}+x\right )
\]