4.38 problem 35

4.38.1 Maple step by step solution
4.38.2 Maple trace
4.38.3 Maple dsolve solution
4.38.4 Mathematica DSolve solution

Internal problem ID [7907]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 35
Date solved : Monday, October 21, 2024 at 04:32:06 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

\begin{align*} x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series expansion around \(x=0\)

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

\[ x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \]

The following is summary of singularities for the above ode. Writing the ode as

\begin{align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end{align*}

Where

\begin{align*} p(x) &= \frac {1+x}{x}\\ q(x) &= \frac {2}{x}\\ \end{align*}
Table 85: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {1+x}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=\frac {2}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be

\[ x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \]

Let the solution be represented as Frobenius power series of the form

\[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \]

Then

\begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*}

Substituting the above back into the ode gives

\begin{equation} \tag{1} x \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (1+x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation}

Which simplifies to

\begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 a_{n} x^{n +r}\right ) = 0 \end{equation}

The next step is to make all powers of \(x\) be \(n +r -1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r -1}\) and adjusting the power and the corresponding index gives

\begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} \left (n +r -1\right ) x^{n +r -1} \\ \moverset {\infty }{\munderset {n =0}{\sum }}2 a_{n} x^{n +r} &= \moverset {\infty }{\munderset {n =1}{\sum }}2 a_{n -1} x^{n +r -1} \\ \end{align*}

Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r -1\).

\begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} \left (n +r -1\right ) x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}2 a_{n -1} x^{n +r -1}\right ) = 0 \end{equation}

The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives

\[ x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )+\left (n +r \right ) a_{n} x^{n +r -1} = 0 \]

When \(n = 0\) the above becomes

\[ x^{-1+r} a_{0} r \left (-1+r \right )+r a_{0} x^{-1+r} = 0 \]

Or

\[ \left (x^{-1+r} r \left (-1+r \right )+r \,x^{-1+r}\right ) a_{0} = 0 \]

Since \(a_{0}\neq 0\) then the above simplifies to

\[ x^{-1+r} r^{2} = 0 \]

Since the above is true for all \(x\) then the indicial equation becomes

\[ r^{2} = 0 \]

Solving for \(r\) gives the roots of the indicial equation as

\begin{align*} r_1 &= 0\\ r_2 &= 0 \end{align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes

\[ x^{-1+r} r^{2} = 0 \]

Solving for \(r\) gives the roots of the indicial equation as \([0, 0]\).

Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\tag {1A} \end{align*}

Now the second solution \(y_{2}\) is found using

\begin{align*} y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right )\tag {1B} \end{align*}

Then the general solution will be

\[ y = c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \]

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), \(a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0} = 1\), and \(\{c_1, c_2\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is

\begin{equation} \tag{3} a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n -1} \left (n +r -1\right )+a_{n} \left (n +r \right )+2 a_{n -1} = 0 \end{equation}

Solving for \(a_{n}\) from recursive equation (4) gives

\[ a_{n} = -\frac {a_{n -1} \left (n +r +1\right )}{n^{2}+2 n r +r^{2}}\tag {4} \]

Which for the root \(r = 0\) becomes

\[ a_{n} = -\frac {a_{n -1} \left (n +1\right )}{n^{2}}\tag {5} \]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 0\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives

\[ a_{1}=\frac {-2-r}{\left (r +1\right )^{2}} \]

Which for the root \(r = 0\) becomes

\[ a_{1}=-2 \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-2-r}{\left (r +1\right )^{2}}\) \(-2\)

For \(n = 2\), using the above recursive equation gives

\[ a_{2}=\frac {3+r}{\left (2+r \right ) \left (r +1\right )^{2}} \]

Which for the root \(r = 0\) becomes

\[ a_{2}={\frac {3}{2}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-2-r}{\left (r +1\right )^{2}}\) \(-2\)
\(a_{2}\) \(\frac {3+r}{\left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{2}\)

For \(n = 3\), using the above recursive equation gives

\[ a_{3}=\frac {-4-r}{\left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \]

Which for the root \(r = 0\) becomes

\[ a_{3}=-{\frac {2}{3}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-2-r}{\left (r +1\right )^{2}}\) \(-2\)
\(a_{2}\) \(\frac {3+r}{\left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{2}\)
\(a_{3}\) \(\frac {-4-r}{\left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(-{\frac {2}{3}}\)

For \(n = 4\), using the above recursive equation gives

\[ a_{4}=\frac {5+r}{\left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \]

Which for the root \(r = 0\) becomes

\[ a_{4}={\frac {5}{24}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-2-r}{\left (r +1\right )^{2}}\) \(-2\)
\(a_{2}\) \(\frac {3+r}{\left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{2}\)
\(a_{3}\) \(\frac {-4-r}{\left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(-{\frac {2}{3}}\)
\(a_{4}\) \(\frac {5+r}{\left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{24}\)

For \(n = 5\), using the above recursive equation gives

\[ a_{5}=\frac {-6-r}{\left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \]

Which for the root \(r = 0\) becomes

\[ a_{5}=-{\frac {1}{20}} \]

And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-2-r}{\left (r +1\right )^{2}}\) \(-2\)
\(a_{2}\) \(\frac {3+r}{\left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{2}\)
\(a_{3}\) \(\frac {-4-r}{\left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(-{\frac {2}{3}}\)
\(a_{4}\) \(\frac {5+r}{\left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{24}\)
\(a_{5}\) \(\frac {-6-r}{\left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(-{\frac {1}{20}}\)

Using the above table, then the first solution \(y_{1}\left (x \right )\) becomes

\begin{align*} y_{1}\left (x \right )&= a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \\ &= 1-2 x +\frac {3 x^{2}}{2}-\frac {2 x^{3}}{3}+\frac {5 x^{4}}{24}-\frac {x^{5}}{20}+O\left (x^{6}\right ) \\ \end{align*}

Now the second solution is found. The second solution is given by

\[ y_{2}\left (x \right ) = y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right ) \]

Where \(b_{n}\) is found using

\[ b_{n} = \frac {d}{d r}a_{n ,r} \]

And the above is then evaluated at \(r = 0\). The above table for \(a_{n ,r}\) is used for this purpose. Computing the derivatives gives the following table

\(n\) \(b_{n ,r}\) \(a_{n}\) \(b_{n ,r} = \frac {d}{d r}a_{n ,r}\) \(b_{n}\left (r =0\right )\)
\(b_{0}\) \(1\) \(1\) N/A since \(b_{n}\) starts from 1 N/A
\(b_{1}\) \(\frac {-2-r}{\left (r +1\right )^{2}}\) \(-2\) \(\frac {3+r}{\left (r +1\right )^{3}}\) \(3\)
\(b_{2}\) \(\frac {3+r}{\left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{2}\) \(\frac {-2 r^{2}-11 r -13}{\left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {13}{4}}\)
\(b_{3}\) \(\frac {-4-r}{\left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(-{\frac {2}{3}}\) \(\frac {3 r^{3}+27 r^{2}+74 r +62}{\left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(\frac {31}{18}\)
\(b_{4}\) \(\frac {5+r}{\left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{24}\) \(\frac {-4 r^{4}-54 r^{3}-256 r^{2}-504 r -346}{\left (4+r \right )^{2} \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {173}{288}}\)
\(b_{5}\) \(\frac {-6-r}{\left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(-{\frac {1}{20}}\) \(\frac {5 r^{5}+95 r^{4}+685 r^{3}+2335 r^{2}+3744 r +2244}{\left (5+r \right )^{2} \left (4+r \right )^{2} \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(\frac {187}{1200}\)

The above table gives all values of \(b_{n}\) needed. Hence the second solution is

\begin{align*} y_{2}\left (x \right )&=y_{1}\left (x \right ) \ln \left (x \right )+b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \\ &= \left (1-2 x +\frac {3 x^{2}}{2}-\frac {2 x^{3}}{3}+\frac {5 x^{4}}{24}-\frac {x^{5}}{20}+O\left (x^{6}\right )\right ) \ln \left (x \right )+3 x -\frac {13 x^{2}}{4}+\frac {31 x^{3}}{18}-\frac {173 x^{4}}{288}+\frac {187 x^{5}}{1200}+O\left (x^{6}\right ) \\ \end{align*}

Therefore the homogeneous solution is

\begin{align*} y_h(x) &= c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \\ &= c_1 \left (1-2 x +\frac {3 x^{2}}{2}-\frac {2 x^{3}}{3}+\frac {5 x^{4}}{24}-\frac {x^{5}}{20}+O\left (x^{6}\right )\right ) + c_2 \left (\left (1-2 x +\frac {3 x^{2}}{2}-\frac {2 x^{3}}{3}+\frac {5 x^{4}}{24}-\frac {x^{5}}{20}+O\left (x^{6}\right )\right ) \ln \left (x \right )+3 x -\frac {13 x^{2}}{4}+\frac {31 x^{3}}{18}-\frac {173 x^{4}}{288}+\frac {187 x^{5}}{1200}+O\left (x^{6}\right )\right ) \\ \end{align*}

Hence the final solution is

\begin{align*} y &= y_h \\ &= c_1 \left (1-2 x +\frac {3 x^{2}}{2}-\frac {2 x^{3}}{3}+\frac {5 x^{4}}{24}-\frac {x^{5}}{20}+O\left (x^{6}\right )\right )+c_2 \left (\left (1-2 x +\frac {3 x^{2}}{2}-\frac {2 x^{3}}{3}+\frac {5 x^{4}}{24}-\frac {x^{5}}{20}+O\left (x^{6}\right )\right ) \ln \left (x \right )+3 x -\frac {13 x^{2}}{4}+\frac {31 x^{3}}{18}-\frac {173 x^{4}}{288}+\frac {187 x^{5}}{1200}+O\left (x^{6}\right )\right ) \\ \end{align*}
4.38.1 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x \left (\frac {d}{d x}y^{\prime }\right )+\left (1+x \right ) y^{\prime }+2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {2 y}{x}-\frac {\left (1+x \right ) y^{\prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {\left (1+x \right ) y^{\prime }}{x}+\frac {2 y}{x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {1+x}{x}, P_{3}\left (x \right )=\frac {2}{x}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x \left (\frac {d}{d x}y^{\prime }\right )+\left (1+x \right ) y^{\prime }+2 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r^{2} x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +1} \left (k +1+r \right )^{2}+a_{k} \left (k +r +2\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r^{2}=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +1} \left (k +1\right )^{2}+a_{k} \left (k +2\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (k +2\right )}{\left (k +1\right )^{2}} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (k +2\right )}{\left (k +1\right )^{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=-\frac {a_{k} \left (k +2\right )}{\left (k +1\right )^{2}}\right ] \end {array} \]

4.38.2 Maple trace
Methods for second order ODEs:
 
4.38.3 Maple dsolve solution

Solving time : 0.015 (sec)
Leaf size : 44

dsolve(x*diff(diff(y(x),x),x)+(1+x)*diff(y(x),x)+2*y(x) = 0,y(x), 
       series,x=0)
 
\[ y = \left (c_2 \ln \left (x \right )+c_1 \right ) \left (1-2 x +\frac {3}{2} x^{2}-\frac {2}{3} x^{3}+\frac {5}{24} x^{4}-\frac {1}{20} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (3 x -\frac {13}{4} x^{2}+\frac {31}{18} x^{3}-\frac {173}{288} x^{4}+\frac {187}{1200} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \]
4.38.4 Mathematica DSolve solution

Solving time : 0.007 (sec)
Leaf size : 111

AsymptoticDSolveValue[{x*D[y[x],{x,2}] +(1+x)*D[y[x],x]+2*y[x] == 0,{}}, 
       y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{20}+\frac {5 x^4}{24}-\frac {2 x^3}{3}+\frac {3 x^2}{2}-2 x+1\right )+c_2 \left (\frac {187 x^5}{1200}-\frac {173 x^4}{288}+\frac {31 x^3}{18}-\frac {13 x^2}{4}+\left (-\frac {x^5}{20}+\frac {5 x^4}{24}-\frac {2 x^3}{3}+\frac {3 x^2}{2}-2 x+1\right ) \log (x)+3 x\right ) \]