1.23 problem 24
Internal
problem
ID
[7715]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
24
Date
solved
:
Monday, October 21, 2024 at 03:59:03 PM
CAS
classification
:
[_separable]
Solve
\begin{align*} y&=x y^{\prime }+x^{2} {y^{\prime }}^{2} \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=\frac {-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}{x} \\
\tag{2} y^{\prime }&=\frac {-\frac {1}{2}-\frac {\sqrt {1+4 y}}{2}}{x} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
The ode \(y^{\prime } = \frac {-1+\sqrt {1+4 y}}{2 x}\) is separable as it can be written as
\begin{align*} y^{\prime }&= \frac {-1+\sqrt {1+4 y}}{2 x}\\ &= f(x) g(y) \end{align*}
Where
\begin{align*} f(x) &= \frac {1}{x}\\ g(y) &= -\frac {1}{2}+\frac {\sqrt {1+4 y}}{2} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(y)} \,dy} &= \int { f(x) \,dx}\\ \int { \frac {1}{-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}\,dy} &= \int { \frac {1}{x} \,dx}\\ \sqrt {1+4 y}+\ln \left (-1+\sqrt {1+4 y}\right )&=\ln \left (x \right )+c_1 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(y)\) is
zero, since we had to divide by this above. Solving \(g(y)=0\) or \(-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}=0\) for \(y\) gives
\begin{align*} y&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} \sqrt {1+4 y}+\ln \left (-1+\sqrt {1+4 y}\right ) = \ln \left (x \right )+c_1\\ y = 0 \end{align*}
Solving for \(y\) from the above solution(s) gives (after possible removing of solutions that do not
verify)
\begin{align*} y&=0\\ y&=\frac {\operatorname {LambertW}\left (x \,{\mathrm e}^{c_1 -1}\right )^{2}}{4}+\frac {\operatorname {LambertW}\left (x \,{\mathrm e}^{c_1 -1}\right )}{2} \end{align*}
We now need to find the singular solutions, these are found by finding for what values \((\frac {-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}{x})\) is
zero. These give
\begin{align*}
y&=0 \\
\end{align*}
Now we go over each such singular solution and check if it verifies the ode
itself and any initial conditions given. If it does not then the singular solution will not be
used.
The solution \(y = 0\) satisfies the ode and initial conditions.
Solving Eq. (2)
The ode \(y^{\prime } = -\frac {1+\sqrt {1+4 y}}{2 x}\) is separable as it can be written as
\begin{align*} y^{\prime }&= -\frac {1+\sqrt {1+4 y}}{2 x}\\ &= f(x) g(y) \end{align*}
Where
\begin{align*} f(x) &= \frac {1}{x}\\ g(y) &= -\frac {\sqrt {1+4 y}}{2}-\frac {1}{2} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(y)} \,dy} &= \int { f(x) \,dx}\\ \int { \frac {1}{-\frac {\sqrt {1+4 y}}{2}-\frac {1}{2}}\,dy} &= \int { \frac {1}{x} \,dx}\\ -\sqrt {1+4 y}+\ln \left (1+\sqrt {1+4 y}\right )&=\ln \left (x \right )+c_2 \end{align*}
Solving for \(y\) from the above solution(s) gives (after possible removing of solutions that do not
verify)
\begin{align*} y = \frac {\operatorname {LambertW}\left (-x \,{\mathrm e}^{c_2 -1}\right )^{2}}{4}+\frac {\operatorname {LambertW}\left (-x \,{\mathrm e}^{c_2 -1}\right )}{2} \end{align*}
1.23.1 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y=x y^{\prime }+x^{2} {y^{\prime }}^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {-\frac {1}{2}-\frac {\sqrt {1+4 y}}{2}}{x}, y^{\prime }=\frac {-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}{x}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {-\frac {1}{2}-\frac {\sqrt {1+4 y}}{2}}{x} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{-\frac {1}{2}-\frac {\sqrt {1+4 y}}{2}}=\frac {1}{x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{-\frac {1}{2}-\frac {\sqrt {1+4 y}}{2}}d x =\int \frac {1}{x}d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {\ln \left (y\right )}{2}-\sqrt {1+4 y}-\frac {\ln \left (-1+\sqrt {1+4 y}\right )}{2}+\frac {\ln \left (1+\sqrt {1+4 y}\right )}{2}=\ln \left (x \right )+\textit {\_C1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}{x} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}=\frac {1}{x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{-\frac {1}{2}+\frac {\sqrt {1+4 y}}{2}}d x =\int \frac {1}{x}d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {\ln \left (y\right )}{2}+\sqrt {1+4 y}+\frac {\ln \left (-1+\sqrt {1+4 y}\right )}{2}-\frac {\ln \left (1+\sqrt {1+4 y}\right )}{2}=\ln \left (x \right )+\textit {\_C1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\frac {\ln \left (y\right )}{2}-\sqrt {1+4 y}-\frac {\ln \left (-1+\sqrt {1+4 y}\right )}{2}+\frac {\ln \left (1+\sqrt {1+4 y}\right )}{2}=\ln \left (x \right )+\mathit {C1} , \frac {\ln \left (y\right )}{2}+\sqrt {1+4 y}+\frac {\ln \left (-1+\sqrt {1+4 y}\right )}{2}-\frac {\ln \left (1+\sqrt {1+4 y}\right )}{2}=\ln \left (x \right )+\mathit {C1} \right \} \end {array} \]
1.23.2 Maple trace
Methods for first order ODEs:
1.23.3 Maple dsolve solution
Solving time : 0.121
(sec)
Leaf size : 97
dsolve(y(x) = x*diff(y(x),x)+x^2*diff(y(x),x)^2,
y(x),singsol=all)
\begin{align*}
\ln \left (x \right )-\sqrt {1+4 y}-\frac {\ln \left (-1+\sqrt {1+4 y}\right )}{2}+\frac {\ln \left (1+\sqrt {1+4 y}\right )}{2}-\frac {\ln \left (y\right )}{2}-c_1 &= 0 \\
\ln \left (x \right )+\sqrt {1+4 y}+\frac {\ln \left (-1+\sqrt {1+4 y}\right )}{2}-\frac {\ln \left (1+\sqrt {1+4 y}\right )}{2}-\frac {\ln \left (y\right )}{2}-c_1 &= 0 \\
\end{align*}
1.23.4 Mathematica DSolve solution
Solving time : 18.695
(sec)
Leaf size : 72
DSolve[{y[x]==x*D[y[x],x]+x^2*(D[y[x],x])^2,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {1}{4} W\left (-e^{-1-2 c_1} x\right ) \left (2+W\left (-e^{-1-2 c_1} x\right )\right ) \\
y(x)\to \frac {1}{4} W\left (e^{-1+2 c_1} x\right ) \left (2+W\left (e^{-1+2 c_1} x\right )\right ) \\
y(x)\to 0 \\
\end{align*}