1.1 section 1.0

TableĀ 1.1: Lookup table

ID

problem

ODE

8139

1

\(y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x}\)

8140

2

\(y^{\prime } = x \left (\cos \left (y\right )+y\right )\)

8141

3

\(y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x}\)

8142

4

\(y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right )\)

8143

5

\(y^{\prime } = y+1\)

8144

6

\(y^{\prime } = x +1\)

8145

7

\(y^{\prime } = x\)

8146

8

\(y^{\prime } = y\)

8147

9

\(y^{\prime } = 0\)

8148

10

\(y^{\prime } = 1+\frac {\sec \left (x \right )}{x}\)

8149

11

\(y^{\prime } = x +\frac {\sec \left (x \right ) y}{x}\)

8150

12

\(y^{\prime } = \frac {2 y}{x}\)

8151

13

\(y^{\prime } = \frac {2 y}{x}\)

8152

14

\(y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )}\)

8153

15

\(y^{\prime } = \frac {1}{x}\)

8154

16

\(y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}}\)

8155

17

\(\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y = 0\)

8156

18

\(y^{\prime } = \sqrt {\frac {y+1}{y^{2}}}\)

8157

19

\(y^{\prime } = \sqrt {1-x^{2}-y^{2}}\)

8158

20

\(y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3}\)

8159

21

\(y^{\prime } = \sqrt {y}+x\)

8160

23

\(x^{2} y^{\prime }+y^{2} = x y y^{\prime }\)

8161

24

\(y = y^{\prime } x +x^{2} {y^{\prime }}^{2}\)

8162

25

\(\left (x +y\right ) y^{\prime } = 0\)

8163

26

\(y^{\prime } x = 0\)

8164

27

\(\frac {y^{\prime }}{x +y} = 0\)

8165

28

\(\frac {y^{\prime }}{x} = 0\)

8166

29

\(y^{\prime } = 0\)

8167

30

\(y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}\)

8168

31

\(y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}}\)

8169

32

\(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)

8170

33

\(y^{\prime } = \frac {1}{1-y}\)

8171

34

\(p^{\prime } = a p-b p^{2}\)

8172

35

\(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)

8173

36

\(x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}}\)

8174

37

\(y^{\prime } x -2 y+b y^{2} = c \,x^{4}\)

8175

38

\(y^{\prime } x -y+y^{2} = x^{{2}/{3}}\)

8176

39

\(u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}}\)

8177

40

\(y y^{\prime }-y = x\)

8178

41

\(y^{\prime \prime }+2 y^{\prime }+y = 0\)

8179

41

\(5 y^{\prime \prime }+2 y^{\prime }+4 y = 0\)

8180

42

\(y^{\prime \prime }+y^{\prime }+4 y = 1\)

8181

43

\(y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right )\)

8182

44

\(y = x {y^{\prime }}^{2}\)

8183

45

\(y y^{\prime } = 1-x {y^{\prime }}^{3}\)

8184

46

\(f^{\prime } = \frac {1}{f}\)

8185

47

\(t y^{\prime \prime }+4 y^{\prime } = t^{2}\)

8186

48

\(\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0\)

8187

49

\(t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0\)

8188

50

\(t y^{\prime \prime }+y^{\prime } = 0\)

8189

51

\(t^{2} y^{\prime \prime }-2 y^{\prime } = 0\)

8190

52

\(y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0\)

8191

53

\(t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0\)

8192

54

\(y^{\prime \prime } = 0\)

8193

55

\(y^{\prime \prime } = 1\)

8194

56

\(y^{\prime \prime } = f \left (t \right )\)

8195

57

\(y^{\prime \prime } = k\)

8196

58

\(y^{\prime } = -4 \sin \left (x -y\right )-4\)

8197

59

\(y^{\prime }+\sin \left (x -y\right ) = 0\)

8198

60

\(y^{\prime \prime } = 4 \sin \left (x \right )-4\)

8199

61

\(y y^{\prime \prime } = 0\)

8200

62

\(y y^{\prime \prime } = 1\)

8201

63

\(y y^{\prime \prime } = x\)

8202

64

\(y^{2} y^{\prime \prime } = x\)

8203

65

\(y^{2} y^{\prime \prime } = 0\)

8204

66

\(3 y y^{\prime \prime } = \sin \left (x \right )\)

8205

67

\(3 y y^{\prime \prime }+y = 5\)

8206

68

\(a y y^{\prime \prime }+b y = c\)

8207

69

\(a y^{2} y^{\prime \prime }+b y^{2} = c\)

8208

70

\(a y y^{\prime \prime }+b y = 0\)

8209

71

\([x^{\prime }\left (t \right ) = 9 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 6 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right )]\)

8210

72

\([x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )]\)

8211

73

\([x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right )]\)

8212

74

\([x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )]\)

8213

75

\([x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )]\)

8214

76

\([x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+4 z \left (t \right )]\)

8215

77

\(x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x\)

8216

78

\(\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x\)

8217

78

\(\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x\)

8218

79

\(y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}}\)

8219

80

\(y^{\prime } = y^{2}+x^{2}\)

8220

81

\(y^{\prime } = 2 \sqrt {y}\)

8221

82

\(z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t}\)

8222

83

\(y^{\prime } = \sqrt {1-y^{2}}\)

8223

84

\(y^{\prime } = -1+x^{2}+y^{2}\)

8224

85

\(y^{\prime } = 2 y \left (x \sqrt {y}-1\right )\)

8225

86

\(y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}\)

8226

87

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8227

88

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8228

88

\(y^{\prime \prime }+y^{\prime }+y = 0\)

8229

89

\(y^{\prime \prime }-y y^{\prime } = 2 x\)

8230

90

\(y^{\prime }-y^{2}-x -x^{2} = 0\)