2.4.66 problem 63

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8381]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 63
Date solved : Sunday, November 10, 2024 at 09:12:28 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \end{align*}

Maple step by step solution

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      <- Kummer successful 
   <- special function solution successful 
<- solving first the homogeneous part of the ODE successful`
 
Maple dsolve solution

Solving time : 0.207 (sec)
Leaf size : 169

dsolve(x/(1-x)*diff(diff(y(x),x),x)+y(x) = cos(x), 
       y(x),singsol=all)
 
\[ y = -x \left (\left (\operatorname {BesselI}\left (0, -x \right )+\operatorname {BesselI}\left (1, -x \right )\right ) \left (\int -\frac {\cos \left (x \right ) \left (\operatorname {BesselK}\left (0, -x \right )-\operatorname {BesselK}\left (1, -x \right )\right ) \left (x -1\right )}{\left (\operatorname {BesselI}\left (0, x\right ) \left (x +1\right ) \operatorname {BesselK}\left (1, -x \right )+1-\left (x +1\right ) \operatorname {BesselK}\left (0, -x \right ) \operatorname {BesselI}\left (1, x\right )\right ) x}d x \right )+\left (-\operatorname {BesselK}\left (0, -x \right )+\operatorname {BesselK}\left (1, -x \right )\right ) \left (\int -\frac {\cos \left (x \right ) \left (\operatorname {BesselI}\left (0, x\right )-\operatorname {BesselI}\left (1, x\right )\right ) \left (x -1\right )}{\left (\operatorname {BesselI}\left (0, x\right ) \left (x +1\right ) \operatorname {BesselK}\left (1, -x \right )+1-\left (x +1\right ) \operatorname {BesselK}\left (0, -x \right ) \operatorname {BesselI}\left (1, x\right )\right ) x}d x \right )+\operatorname {BesselK}\left (1, -x \right ) c_{1} -\operatorname {BesselK}\left (0, -x \right ) c_{1} -\operatorname {BesselI}\left (0, -x \right ) c_{2} -\operatorname {BesselI}\left (1, -x \right ) c_{2} \right ) \]
Mathematica DSolve solution

Solving time : 7.56 (sec)
Leaf size : 133

DSolve[{x/(1-x)*D[y[x],{x,2}]+y[x]==Cos[x],{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} x \left (\operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right ) \int _1^x2 \sqrt {\pi } (\operatorname {BesselI}(0,K[1])-\operatorname {BesselI}(1,K[1])) \cos (K[1]) (K[1]-1)dK[1]+e^x (\operatorname {BesselI}(0,x)-\operatorname {BesselI}(1,x)) \int _1^x-2 e^{-K[2]} \sqrt {\pi } \cos (K[2]) \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 K[2]\right ) (K[2]-1)dK[2]+c_1 \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right )+c_2 e^x \operatorname {BesselI}(0,x)-c_2 e^x \operatorname {BesselI}(1,x)\right ) \]