2.4.70 Problem 67
Internal
problem
ID
[10233]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
67
Date
solved
:
Monday, December 08, 2025 at 07:51:32 PM
CAS
classification
:
system_of_ODEs
\begin{align*}
x^{\prime }&=x+2 y+2 t +1 \\
y^{\prime }&=5 x+y+3 t -1 \\
\end{align*}
Entering first order system solver
2.4.70.1 Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are
different methods to determine this but will not be shown here. This is a system of linear ODE’s
given as
\begin{align*} \vec {x}'(t) &= A\, \vec {x}(t) + \vec {G}(t) \end{align*}
Or
\begin{align*} \left [\begin {array}{c} x^{\prime } \\ y^{\prime } \end {array}\right ] &= \left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ]\, \left [\begin {array}{c} x \\ y \end {array}\right ] + \left [\begin {array}{c} 1+2 t \\ 3 t -1 \end {array}\right ] \end{align*}
Since the system is nonhomogeneous, then the solution is given by
\begin{align*} \vec {x}(t) &= \vec {x}_h(t) + \vec {x}_p(t) \end{align*}
Where \(\vec {x}_h(t)\) is the homogeneous solution to \(\vec {x}'(t) = A\, \vec {x}(t)\) and \(\vec {x}_p(t)\) is a particular solution to \(\vec {x}'(t) = A\, \vec {x}(t) + \vec {G}(t)\). The particular solution
will be found using variation of parameters method applied to the fundamental matrix. For the
above matrix \(A\), the matrix exponential can be found to be
\begin{align*} e^{A t} &= \left [\begin {array}{cc} {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) & \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{5} \\ \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{2} & {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) \end {array}\right ] \end{align*}
Therefore the homogeneous solution is
\begin{align*} \vec {x}_h(t) &= e^{A t} \vec {c} \\ &= \left [\begin {array}{cc} {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) & \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{5} \\ \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{2} & {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) \end {array}\right ] \left [\begin {array}{c} c_{1} \\ c_{2} \end {array}\right ] \\ &= \left [\begin {array}{c} {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) c_{1}+\frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, c_{2}}{5} \\ \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, c_{1}}{2}+{\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) c_{2} \end {array}\right ]\\ &= \left [\begin {array}{c} {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) c_{1}+\frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, c_{2}}{5} \\ \frac {{\mathrm e}^{t} \left (c_{1} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )+2 c_{2} \cosh \left (t \sqrt {10}\right )\right )}{2} \end {array}\right ] \end{align*}
The particular solution given by
\begin{align*} \vec {x}_p (t) &= e^{A t} \int { e^{-A t} \vec {G}(t) \,dt} \end{align*}
But
\begin{align*} e^{-A t} &= (e^{A t})^{-1} \\ &= \left [\begin {array}{cc} {\mathrm e}^{-t} \cosh \left (t \sqrt {10}\right ) & -\frac {{\mathrm e}^{-t} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )}{5} \\ -\frac {{\mathrm e}^{-t} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )}{2} & {\mathrm e}^{-t} \cosh \left (t \sqrt {10}\right ) \end {array}\right ] \end{align*}
Hence
\begin{align*} \vec {x}_p (t) &= \left [\begin {array}{cc} {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) & \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{5} \\ \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{2} & {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) \end {array}\right ] \int { \left [\begin {array}{cc} {\mathrm e}^{-t} \cosh \left (t \sqrt {10}\right ) & -\frac {{\mathrm e}^{-t} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )}{5} \\ -\frac {{\mathrm e}^{-t} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )}{2} & {\mathrm e}^{-t} \cosh \left (t \sqrt {10}\right ) \end {array}\right ] \left [\begin {array}{c} 1+2 t \\ 3 t -1 \end {array}\right ]\,dt}\\ &= \left [\begin {array}{cc} {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) & \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{5} \\ \frac {{\mathrm e}^{t} \sinh \left (t \sqrt {10}\right ) \sqrt {10}}{2} & {\mathrm e}^{t} \cosh \left (t \sqrt {10}\right ) \end {array}\right ] \left [\begin {array}{c} \frac {\left (\cosh \left (t \right )-\sinh \left (t \right )\right ) \left (63 \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, t +67 \sinh \left (t \sqrt {10}\right ) \sqrt {10}-180 \cosh \left (t \sqrt {10}\right ) t +85 \cosh \left (t \sqrt {10}\right )\right )}{405} \\ \frac {\left (\cosh \left (t \right )-\sinh \left (t \right )\right ) \left (36 \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, t -17 \sinh \left (t \sqrt {10}\right ) \sqrt {10}-126 \cosh \left (t \sqrt {10}\right ) t -134 \cosh \left (t \sqrt {10}\right )\right )}{162} \end {array}\right ]\\ &= \left [\begin {array}{c} -\frac {{\mathrm e}^{t} \left (36 t -17\right ) \left (\cosh \left (t \right )-\sinh \left (t \right )\right )}{81} \\ -\frac {{\mathrm e}^{t} \left (63 t +67\right ) \left (\cosh \left (t \right )-\sinh \left (t \right )\right )}{81} \end {array}\right ] \end{align*}
Hence the complete solution is
\begin{align*} \vec {x}(t) &= \vec {x}_h(t) + \vec {x}_p (t) \\ &= \left [\begin {array}{c} -\frac {4 \,{\mathrm e}^{t} \left (-\frac {9 c_{1} \cosh \left (t \sqrt {10}\right )}{4}-\frac {9 c_{2} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )}{20}+\left (\cosh \left (t \right )-\sinh \left (t \right )\right ) \left (t -\frac {17}{36}\right )\right )}{9} \\ -\frac {7 \,{\mathrm e}^{t} \left (-\frac {9 c_{2} \cosh \left (t \sqrt {10}\right )}{7}-\frac {9 c_{1} \sqrt {10}\, \sinh \left (t \sqrt {10}\right )}{14}+\left (t +\frac {67}{63}\right ) \left (\cosh \left (t \right )-\sinh \left (t \right )\right )\right )}{9} \end {array}\right ] \end{align*}
2.4.70.2 Solution using explicit Eigenvalue and Eigenvector method
This is a system of linear ODE’s given as
\begin{align*} \vec {x}'(t) &= A\, \vec {x}(t) + \vec {G}(t) \end{align*}
Or
\begin{align*} \left [\begin {array}{c} x^{\prime } \\ y^{\prime } \end {array}\right ] &= \left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ]\, \left [\begin {array}{c} x \\ y \end {array}\right ] + \left [\begin {array}{c} 1+2 t \\ 3 t -1 \end {array}\right ] \end{align*}
Since the system is nonhomogeneous, then the solution is given by
\begin{align*} \vec {x}(t) &= \vec {x}_h(t) + \vec {x}_p(t) \end{align*}
Where \(\vec {x}_h(t)\) is the homogeneous solution to \(\vec {x}'(t) = A\, \vec {x}(t)\) and \(\vec {x}_p(t)\) is a particular solution to \(\vec {x}'(t) = A\, \vec {x}(t) + \vec {G}(t)\). The particular
solution will be found using variation of parameters method applied to the fundamental
matrix.
The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is
done by solving the following equation for the eigenvalues \(\lambda \)
\begin{align*} \operatorname {det} \left ( A- \lambda I \right ) &= 0 \end{align*}
Expanding gives
\begin{align*} \operatorname {det} \left (\left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ]-\lambda \left [\begin {array}{cc} 1 & 0 \\ 0 & 1 \end {array}\right ]\right ) &= 0 \end{align*}
Therefore
\begin{align*} \operatorname {det} \left (\left [\begin {array}{cc} 1-\lambda & 2 \\ 5 & 1-\lambda \end {array}\right ]\right ) &= 0 \end{align*}
Which gives the characteristic equation
\begin{align*} \lambda ^{2}-2 \lambda -9&=0 \end{align*}
The roots of the above are the eigenvalues.
\begin{align*} \lambda _1 &= 1+\sqrt {10}\\ \lambda _2 &= 1-\sqrt {10} \end{align*}
This table summarises the above result
| | |
| eigenvalue |
algebraic multiplicity |
type of eigenvalue |
| | |
| \(1-\sqrt {10}\) | \(1\) | real eigenvalue |
| | |
| \(1+\sqrt {10}\) | \(1\) | real eigenvalue |
| | |
Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda _{1} = 1-\sqrt {10}\)
We need to solve \(A \vec {v} = \lambda \vec {v}\) or \((A-\lambda I) \vec {v} = \vec {0}\) which becomes
\begin{align*} \left (\left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ] - \left (1-\sqrt {10}\right ) \left [\begin {array}{cc} 1 & 0 \\ 0 & 1 \end {array}\right ]\right ) \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ]\\ \left [\begin {array}{cc} \sqrt {10} & 2 \\ 5 & \sqrt {10} \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \end{align*}
Now forward elimination is applied to solve for the eigenvector \(\vec {v}\). The augmented matrix is
\[ \left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} \sqrt {10}&2&0\\ 5&\sqrt {10}&0 \end {array} \right ] \]
\begin{align*} R_{2} = R_{2}-\frac {\sqrt {10}\, R_{1}}{2} &\Longrightarrow \hspace {5pt}\left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} \sqrt {10}&2&0\\ 0&0&0 \end {array} \right ] \end{align*}
Therefore the system in Echelon form is
\[ \left [\begin {array}{cc} \sqrt {10} & 2 \\ 0 & 0 \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ] = \left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \]
The free variables are \(\{v_{2}\}\) and the leading variables are \(\{v_{1}\}\).
Let \(v_{2} = t\). Now we start back substitution. Solving the above equation for the leading variables in
terms of free variables gives equation \(\left \{v_{1} = -\frac {t \sqrt {10}}{5}\right \}\)
Hence the solution is
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} -\frac {t \sqrt {10}}{5} \\ t \end {array}\right ] \]
Since there is one free Variable, we have found one eigenvector associated
with this eigenvalue. The above can be written as \[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = t \left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] \]
Let \(t = 1\) the eigenvector becomes \[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] \]
Which is
normalized to \[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} -\sqrt {10} \\ 5 \end {array}\right ] \]
Considering the eigenvalue \(\lambda _{2} = 1+\sqrt {10}\)
We need to solve \(A \vec {v} = \lambda \vec {v}\) or \((A-\lambda I) \vec {v} = \vec {0}\) which becomes
\begin{align*} \left (\left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ] - \left (1+\sqrt {10}\right ) \left [\begin {array}{cc} 1 & 0 \\ 0 & 1 \end {array}\right ]\right ) \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ]\\ \left [\begin {array}{cc} -\sqrt {10} & 2 \\ 5 & -\sqrt {10} \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \end{align*}
Now forward elimination is applied to solve for the eigenvector \(\vec {v}\). The augmented matrix is
\[ \left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} -\sqrt {10}&2&0\\ 5&-\sqrt {10}&0 \end {array} \right ] \]
\begin{align*} R_{2} = R_{2}+\frac {\sqrt {10}\, R_{1}}{2} &\Longrightarrow \hspace {5pt}\left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} -\sqrt {10}&2&0\\ 0&0&0 \end {array} \right ] \end{align*}
Therefore the system in Echelon form is
\[ \left [\begin {array}{cc} -\sqrt {10} & 2 \\ 0 & 0 \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ] = \left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \]
The free variables are \(\{v_{2}\}\) and the leading variables are \(\{v_{1}\}\).
Let \(v_{2} = t\). Now we start back substitution. Solving the above equation for the leading variables in
terms of free variables gives equation \(\left \{v_{1} = \frac {t \sqrt {10}}{5}\right \}\)
Hence the solution is
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} \frac {t \sqrt {10}}{5} \\ t \end {array}\right ] \]
Since there is one free Variable, we have found one eigenvector associated
with this eigenvalue. The above can be written as \[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = t \left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] \]
Let \(t = 1\) the eigenvector becomes \[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] \]
Which is
normalized to \[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} \sqrt {10} \\ 5 \end {array}\right ] \]
The following table gives a summary of this result. It shows for each eigenvalue
the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with
the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does
not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized
eigenvectors for this eigenvalue.
| | | | |
| |
multiplicity
| |
|
| | | | |
|
eigenvalue | algebraic \(m\) | geometric \(k\) | defective? | eigenvectors |
| | | | |
| \(1+\sqrt {10}\) | \(1\) | \(1\) | No | \(\left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ]\) |
| | | | |
| \(1-\sqrt {10}\) |
\(1\) |
\(1\) |
No |
\(\left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ]\) |
| | | | |
Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue
and generate the solution basis. The only problem we need to take care of is if the eigenvalue is
defective. Since eigenvalue \(1+\sqrt {10}\) is real and distinct then the corresponding eigenvector solution is
\begin{align*} \vec {x}_{1}(t) &= \vec {v}_{1} e^{\left (1+\sqrt {10}\right ) t}\\ &= \left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] e^{\left (1+\sqrt {10}\right ) t} \end{align*}
Since eigenvalue \(1-\sqrt {10}\) is real and distinct then the corresponding eigenvector solution is
\begin{align*} \vec {x}_{2}(t) &= \vec {v}_{2} e^{\left (1-\sqrt {10}\right ) t}\\ &= \left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] e^{\left (1-\sqrt {10}\right ) t} \end{align*}
Therefore the homogeneous solution is
\begin{align*} \vec {x}_h(t) &= c_{1} \vec {x}_{1}(t) + c_{2} \vec {x}_{2}(t) \end{align*}
Which is written as
\begin{align*} \left [\begin {array}{c} x \\ y \end {array}\right ] &= c_{1} \left [\begin {array}{c} \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1+\sqrt {10}\right ) t} \end {array}\right ] + c_{2} \left [\begin {array}{c} -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1-\sqrt {10}\right ) t} \end {array}\right ] \end{align*}
Now that we found homogeneous solution above, we need to find a particular solution \(\vec {x}_p(t)\). We will
use Variation of parameters. The fundamental matrix is
\[ \Phi =\begin {bmatrix} \vec {x}_{1} & \vec {x}_{2} & \cdots \end {bmatrix} \]
Where \(\vec {x}_i\) are the solution basis found
above. Therefore the fundamental matrix is \begin{align*} \Phi (t)&= \left [\begin {array}{cc} \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} & -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1+\sqrt {10}\right ) t} & {\mathrm e}^{\left (1-\sqrt {10}\right ) t} \end {array}\right ] \end{align*}
The particular solution is then given by
\begin{align*} \vec {x}_p(t) &= \Phi \int { \Phi ^{-1} \vec {G}(t) \, dt}\\ \end{align*}
But
\begin{align*} \Phi ^{-1} &= \left [\begin {array}{cc} \frac {{\mathrm e}^{-\left (1+\sqrt {10}\right ) t} \sqrt {10}}{4} & \frac {{\mathrm e}^{-\left (1+\sqrt {10}\right ) t}}{2} \\ -\frac {\sqrt {10}\, {\mathrm e}^{\left (-1+\sqrt {10}\right ) t}}{4} & \frac {{\mathrm e}^{\left (-1+\sqrt {10}\right ) t}}{2} \end {array}\right ] \end{align*}
Hence
\begin{align*} \vec {x}_p(t) &= \left [\begin {array}{cc} \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} & -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1+\sqrt {10}\right ) t} & {\mathrm e}^{\left (1-\sqrt {10}\right ) t} \end {array}\right ] \int { \left [\begin {array}{cc} \frac {{\mathrm e}^{-\left (1+\sqrt {10}\right ) t} \sqrt {10}}{4} & \frac {{\mathrm e}^{-\left (1+\sqrt {10}\right ) t}}{2} \\ -\frac {\sqrt {10}\, {\mathrm e}^{\left (-1+\sqrt {10}\right ) t}}{4} & \frac {{\mathrm e}^{\left (-1+\sqrt {10}\right ) t}}{2} \end {array}\right ] \left [\begin {array}{c} 1+2 t \\ 3 t -1 \end {array}\right ] \, dt}\\ &= \left [\begin {array}{cc} \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} & -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1+\sqrt {10}\right ) t} & {\mathrm e}^{\left (1-\sqrt {10}\right ) t} \end {array}\right ] \int { \left [\begin {array}{c} \frac {{\mathrm e}^{-\left (1+\sqrt {10}\right ) t} \left (2 t \sqrt {10}+\sqrt {10}+6 t -2\right )}{4} \\ -\frac {{\mathrm e}^{\left (-1+\sqrt {10}\right ) t} \left (2 t \sqrt {10}+\sqrt {10}-6 t +2\right )}{4} \end {array}\right ] \, dt}\\ &= \left [\begin {array}{cc} \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} & -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1+\sqrt {10}\right ) t} & {\mathrm e}^{\left (1-\sqrt {10}\right ) t} \end {array}\right ] \left [\begin {array}{c} \frac {\left (18 t \sqrt {10}+185 \sqrt {10}-18 t -572\right ) {\mathrm e}^{-\left (1+\sqrt {10}\right ) t} \left (2 t \sqrt {10}+\sqrt {10}+6 t -2\right )}{-648 t -5184+1620 \sqrt {10}} \\ -\frac {\left (18 t \sqrt {10}+185 \sqrt {10}+18 t +572\right ) {\mathrm e}^{\left (-1+\sqrt {10}\right ) t} \left (2 t \sqrt {10}+\sqrt {10}-6 t +2\right )}{324 \left (2 t +16+5 \sqrt {10}\right )} \end {array}\right ] \\ &= \left [\begin {array}{c} \frac {-72 t^{3}-1118 t^{2}+436 t +51}{162 t^{2}+2592 t +243} \\ \frac {-126 t^{3}-2150 t^{2}-2333 t -201}{162 t^{2}+2592 t +243} \end {array}\right ] \end{align*}
Now that we found particular solution, the final solution is
\begin{align*} \vec {x}(t) &= \vec {x}_h(t) + \vec {x}_p(t)\\ \left [\begin {array}{c} x \\ y \end {array}\right ] &= \left [\begin {array}{c} \frac {c_1 \,{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} \\ c_1 \,{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \end {array}\right ] + \left [\begin {array}{c} -\frac {c_2 \,{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} \\ c_2 \,{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \end {array}\right ] + \left [\begin {array}{c} \frac {-72 t^{3}-1118 t^{2}+436 t +51}{162 t^{2}+2592 t +243} \\ \frac {-126 t^{3}-2150 t^{2}-2333 t -201}{162 t^{2}+2592 t +243} \end {array}\right ] \end{align*}
Which becomes
\begin{align*} \left [\begin {array}{c} x \\ y \end {array}\right ] = \left [\begin {array}{c} \frac {c_1 \,{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5}-\frac {c_2 \,{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} \sqrt {10}}{5}-\frac {4 t}{9}+\frac {17}{81} \\ c_1 \,{\mathrm e}^{\left (1+\sqrt {10}\right ) t}+c_2 \,{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t}-\frac {7 t}{9}-\frac {67}{81} \end {array}\right ] \end{align*}
2.4.70.3 ✓ Maple. Time used: 0.071 (sec). Leaf size: 67
ode:=[diff(x(t),t) = x(t)+2*y(t)+2*t+1, diff(y(t),t) = 5*x(t)+y(t)+3*t-1];
dsolve(ode);
\begin{align*}
x \left (t \right ) &= {\mathrm e}^{\left (1+\sqrt {10}\right ) t} c_2 +{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} c_1 -\frac {4 t}{9}+\frac {17}{81} \\
y \left (t \right ) &= \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} c_2 \sqrt {10}}{2}-\frac {{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} c_1 \sqrt {10}}{2}-\frac {7 t}{9}-\frac {67}{81} \\
\end{align*}
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}x \left (t \right )=x \left (t \right )+2 y \left (t \right )+2 t +1, \frac {d}{d t}y \left (t \right )=5 x \left (t \right )+y \left (t \right )+3 t -1\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{c} x \left (t \right ) \\ y \left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Convert system into a vector equation}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ]\cdot {\moverset {\rightarrow }{x}}\left (t \right )+\left [\begin {array}{c} 2 t +1 \\ 3 t -1 \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ]\cdot {\moverset {\rightarrow }{x}}\left (t \right )+\left [\begin {array}{c} 2 t +1 \\ 3 t -1 \end {array}\right ] \\ \bullet & {} & \textrm {Define the forcing function}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{f}}\left (t \right )=\left [\begin {array}{c} 2 t +1 \\ 3 t -1 \end {array}\right ] \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cc} 1 & 2 \\ 5 & 1 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}\left (t \right )=A \cdot {\moverset {\rightarrow }{x}}\left (t \right )+{\moverset {\rightarrow }{f}} \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [1-\sqrt {10}, \left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ]\right ], \left [1+\sqrt {10}, \left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1-\sqrt {10}, \left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{1}={\mathrm e}^{\left (1-\sqrt {10}\right ) t}\cdot \left [\begin {array}{c} -\frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1+\sqrt {10}, \left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{2}={\mathrm e}^{\left (1+\sqrt {10}\right ) t}\cdot \left [\begin {array}{c} \frac {\sqrt {10}}{5} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution of the system of ODEs can be written in terms of the particular solution}\hspace {3pt} {\moverset {\rightarrow }{x}}_{p}\left (t \right ) \\ {} & {} & {\moverset {\rightarrow }{x}}\left (t \right )=\mathit {C1} {\moverset {\rightarrow }{x}}_{1}+\mathit {C2} {\moverset {\rightarrow }{x}}_{2}+{\moverset {\rightarrow }{x}}_{p}\left (t \right ) \\ \square & {} & \textrm {Fundamental matrix}\hspace {3pt} \\ {} & \circ & \textrm {Let}\hspace {3pt} \phi \left (t \right )\hspace {3pt}\textrm {be the matrix whose columns are the independent solutions of the homogeneous system.}\hspace {3pt} \\ {} & {} & \phi \left (t \right )=\left [\begin {array}{cc} -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} & \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1-\sqrt {10}\right ) t} & {\mathrm e}^{\left (1+\sqrt {10}\right ) t} \end {array}\right ] \\ {} & \circ & \textrm {The fundamental matrix,}\hspace {3pt} \Phi \left (t \right )\hspace {3pt}\textrm {is a normalized version of}\hspace {3pt} \phi \left (t \right )\hspace {3pt}\textrm {satisfying}\hspace {3pt} \Phi \left (0\right )=I \hspace {3pt}\textrm {where}\hspace {3pt} I \hspace {3pt}\textrm {is the identity matrix}\hspace {3pt} \\ {} & {} & \Phi \left (t \right )=\phi \left (t \right )\cdot \phi \left (0\right )^{-1} \\ {} & \circ & \textrm {Substitute the value of}\hspace {3pt} \phi \left (t \right )\hspace {3pt}\textrm {and}\hspace {3pt} \phi \left (0\right ) \\ {} & {} & \Phi \left (t \right )=\left [\begin {array}{cc} -\frac {{\mathrm e}^{\left (1-\sqrt {10}\right ) t} \sqrt {10}}{5} & \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} \sqrt {10}}{5} \\ {\mathrm e}^{\left (1-\sqrt {10}\right ) t} & {\mathrm e}^{\left (1+\sqrt {10}\right ) t} \end {array}\right ]\cdot \left [\begin {array}{cc} -\frac {\sqrt {10}}{5} & \frac {\sqrt {10}}{5} \\ 1 & 1 \end {array}\right ]^{-1} \\ {} & \circ & \textrm {Evaluate and simplify to get the fundamental matrix}\hspace {3pt} \\ {} & {} & \Phi \left (t \right )=\left [\begin {array}{cc} \frac {{\mathrm e}^{t} \left ({\mathrm e}^{-t \sqrt {10}}+{\mathrm e}^{t \sqrt {10}}\right )}{2} & -\frac {{\mathrm e}^{t} \sqrt {10}\, \left ({\mathrm e}^{-t \sqrt {10}}-{\mathrm e}^{t \sqrt {10}}\right )}{10} \\ -\frac {{\mathrm e}^{t} \sqrt {10}\, \left ({\mathrm e}^{-t \sqrt {10}}-{\mathrm e}^{t \sqrt {10}}\right )}{4} & \frac {{\mathrm e}^{t} \left ({\mathrm e}^{-t \sqrt {10}}+{\mathrm e}^{t \sqrt {10}}\right )}{2} \end {array}\right ] \\ \square & {} & \textrm {Find a particular solution of the system of ODEs using variation of parameters}\hspace {3pt} \\ {} & \circ & \textrm {Let the particular solution be the fundamental matrix multiplied by}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (t \right )\hspace {3pt}\textrm {and solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (t \right ) \\ {} & {} & {\moverset {\rightarrow }{x}}_{p}\left (t \right )=\Phi \left (t \right )\cdot {\moverset {\rightarrow }{v}}\left (t \right ) \\ {} & \circ & \textrm {Take the derivative of the particular solution}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}_{p}\left (t \right )=\left (\frac {d}{d t}\Phi \left (t \right )\right )\cdot {\moverset {\rightarrow }{v}}\left (t \right )+\Phi \left (t \right )\cdot \left (\frac {d}{d t}{\moverset {\rightarrow }{v}}\left (t \right )\right ) \\ {} & \circ & \textrm {Substitute particular solution and its derivative into the system of ODEs}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d t}\Phi \left (t \right )\right )\cdot {\moverset {\rightarrow }{v}}\left (t \right )+\Phi \left (t \right )\cdot \left (\frac {d}{d t}{\moverset {\rightarrow }{v}}\left (t \right )\right )=A \cdot \Phi \left (t \right )\cdot {\moverset {\rightarrow }{v}}\left (t \right )+{\moverset {\rightarrow }{f}}\left (t \right ) \\ {} & \circ & \textrm {The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system}\hspace {3pt} \\ {} & {} & A \cdot \Phi \left (t \right )\cdot {\moverset {\rightarrow }{v}}\left (t \right )+\Phi \left (t \right )\cdot \left (\frac {d}{d t}{\moverset {\rightarrow }{v}}\left (t \right )\right )=A \cdot \Phi \left (t \right )\cdot {\moverset {\rightarrow }{v}}\left (t \right )+{\moverset {\rightarrow }{f}}\left (t \right ) \\ {} & \circ & \textrm {Cancel like terms}\hspace {3pt} \\ {} & {} & \Phi \left (t \right )\cdot \left (\frac {d}{d t}{\moverset {\rightarrow }{v}}\left (t \right )\right )={\moverset {\rightarrow }{f}}\left (t \right ) \\ {} & \circ & \textrm {Multiply by the inverse of the fundamental matrix}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{v}}\left (t \right )=\Phi \left (t \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (t \right ) \\ {} & \circ & \textrm {Integrate to solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (t \right ) \\ {} & {} & {\moverset {\rightarrow }{v}}\left (t \right )=\int _{0}^{t}\Phi \left (s \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \\ {} & \circ & \textrm {Plug}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (t \right )\hspace {3pt}\textrm {into the equation for the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{p}\left (t \right )=\Phi \left (t \right )\cdot \int _{0}^{t}\Phi \left (s \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \\ {} & \circ & \textrm {Plug in the fundamental matrix and the forcing function and compute}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{p}\left (t \right )=\left [\begin {array}{c} \frac {67 \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, {\mathrm e}^{t}}{405}-\frac {17 \cosh \left (t \sqrt {10}\right ) {\mathrm e}^{t}}{81}-\frac {4 t}{9}+\frac {17}{81} \\ -\frac {17 \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, {\mathrm e}^{t}}{162}+\frac {67 \cosh \left (t \sqrt {10}\right ) {\mathrm e}^{t}}{81}-\frac {7 t}{9}-\frac {67}{81} \end {array}\right ] \\ \bullet & {} & \textrm {Plug particular solution back into general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}\left (t \right )=\mathit {C1} {\moverset {\rightarrow }{x}}_{1}+\mathit {C2} {\moverset {\rightarrow }{x}}_{2}+\left [\begin {array}{c} \frac {67 \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, {\mathrm e}^{t}}{405}-\frac {17 \cosh \left (t \sqrt {10}\right ) {\mathrm e}^{t}}{81}-\frac {4 t}{9}+\frac {17}{81} \\ -\frac {17 \sinh \left (t \sqrt {10}\right ) \sqrt {10}\, {\mathrm e}^{t}}{162}+\frac {67 \cosh \left (t \sqrt {10}\right ) {\mathrm e}^{t}}{81}-\frac {7 t}{9}-\frac {67}{81} \end {array}\right ] \\ \bullet & {} & \textrm {Substitute in vector of dependent variables}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} x \left (t \right ) \\ y \left (t \right ) \end {array}\right ]=\left [\begin {array}{c} \frac {\left (-85+\left (-162 \mathit {C1} -67\right ) \sqrt {10}\right ) {\mathrm e}^{-\left (-1+\sqrt {10}\right ) t}}{810}+\frac {\left (-85+\left (162 \mathit {C2} +67\right ) \sqrt {10}\right ) {\mathrm e}^{\left (1+\sqrt {10}\right ) t}}{810}-\frac {4 t}{9}+\frac {17}{81} \\ \frac {{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} \left (17 \sqrt {10}+324 \mathit {C1} +134\right )}{324}+\frac {\left (-17 \sqrt {10}+324 \mathit {C2} +134\right ) {\mathrm e}^{\left (1+\sqrt {10}\right ) t}}{324}-\frac {7 t}{9}-\frac {67}{81} \end {array}\right ] \\ \bullet & {} & \textrm {Solution to the system of ODEs}\hspace {3pt} \\ {} & {} & \left \{x \left (t \right )=\frac {\left (-85+\left (-162 \mathit {C1} -67\right ) \sqrt {10}\right ) {\mathrm e}^{-\left (-1+\sqrt {10}\right ) t}}{810}+\frac {\left (-85+\left (162 \mathit {C2} +67\right ) \sqrt {10}\right ) {\mathrm e}^{\left (1+\sqrt {10}\right ) t}}{810}-\frac {4 t}{9}+\frac {17}{81}, y \left (t \right )=\frac {{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} \left (17 \sqrt {10}+324 \mathit {C1} +134\right )}{324}+\frac {\left (-17 \sqrt {10}+324 \mathit {C2} +134\right ) {\mathrm e}^{\left (1+\sqrt {10}\right ) t}}{324}-\frac {7 t}{9}-\frac {67}{81}\right \} \end {array} \]
2.4.70.4 ✓ Mathematica. Time used: 10.842 (sec). Leaf size: 494
ode={D[x[t],t]==x[t]+2*y[t]+2*t+1,D[y[t],t]==5*x[t]+y[t]+3*t-1};
ic={};
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
\begin{align*} x(t)&\to \frac {1}{10} e^{t-\sqrt {10} t} \left (5 \left (e^{2 \sqrt {10} t}+1\right ) \int _1^t\frac {1}{10} e^{-\left (\left (1+\sqrt {10}\right ) K[1]\right )} \left (\left (10+3 \sqrt {10}\right ) K[1]+e^{2 \sqrt {10} K[1]} \left (\left (10-3 \sqrt {10}\right ) K[1]+\sqrt {10}+5\right )-\sqrt {10}+5\right )dK[1]+\sqrt {10} \left (e^{2 \sqrt {10} t}-1\right ) \int _1^t\frac {1}{4} e^{-\left (\left (1+\sqrt {10}\right ) K[2]\right )} \left (2 \left (3+\sqrt {10}\right ) K[2]-e^{2 \sqrt {10} K[2]} \left (2 \left (-3+\sqrt {10}\right ) K[2]+\sqrt {10}+2\right )+\sqrt {10}-2\right )dK[2]+5 c_1 e^{2 \sqrt {10} t}+\sqrt {10} c_2 e^{2 \sqrt {10} t}+5 c_1-\sqrt {10} c_2\right )\\ y(t)&\to \frac {1}{4} e^{t-\sqrt {10} t} \left (\sqrt {10} \left (e^{2 \sqrt {10} t}-1\right ) \int _1^t\frac {1}{10} e^{-\left (\left (1+\sqrt {10}\right ) K[1]\right )} \left (\left (10+3 \sqrt {10}\right ) K[1]+e^{2 \sqrt {10} K[1]} \left (\left (10-3 \sqrt {10}\right ) K[1]+\sqrt {10}+5\right )-\sqrt {10}+5\right )dK[1]+2 \left (e^{2 \sqrt {10} t}+1\right ) \int _1^t\frac {1}{4} e^{-\left (\left (1+\sqrt {10}\right ) K[2]\right )} \left (2 \left (3+\sqrt {10}\right ) K[2]-e^{2 \sqrt {10} K[2]} \left (2 \left (-3+\sqrt {10}\right ) K[2]+\sqrt {10}+2\right )+\sqrt {10}-2\right )dK[2]+\sqrt {10} c_1 e^{2 \sqrt {10} t}+2 c_2 e^{2 \sqrt {10} t}-\sqrt {10} c_1+2 c_2\right ) \end{align*}
2.4.70.5 ✓ Sympy. Time used: 0.302 (sec). Leaf size: 82
from sympy import *
t = symbols("t")
x = Function("x")
y = Function("y")
ode=[Eq(-2*t - x(t) - 2*y(t) + Derivative(x(t), t) - 1,0),Eq(-3*t - 5*x(t) - y(t) + Derivative(y(t), t) + 1,0)]
ics = {}
dsolve(ode,func=[x(t),y(t)],ics=ics)
\[
\left [ x{\left (t \right )} = \frac {\sqrt {10} C_{1} e^{t \left (1 + \sqrt {10}\right )}}{5} - \frac {\sqrt {10} C_{2} e^{t \left (1 - \sqrt {10}\right )}}{5} - \frac {4 t}{9} + \frac {17}{81}, \ y{\left (t \right )} = C_{1} e^{t \left (1 + \sqrt {10}\right )} + C_{2} e^{t \left (1 - \sqrt {10}\right )} - \frac {7 t}{9} - \frac {67}{81}\right ]
\]