1.29 problem 30

1.29.1 Solved as first order ode of type dAlembert
1.29.2 Maple step by step solution
1.29.3 Maple trace
1.29.4 Maple dsolve solution
1.29.5 Mathematica DSolve solution

Internal problem ID [7721]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 30
Date solved : Monday, October 21, 2024 at 03:59:09 PM
CAS classification : [[_homogeneous, `class C`], _rational, _dAlembert]

Solve

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \end{align*}

1.29.1 Solved as first order ode of type dAlembert

Time used: 0.179 (sec)

Let \(p=y^{\prime }\) the ode becomes

\begin{align*} y = x \,p^{2}+p^{2} \end{align*}

Solving for \(y\) from the above results in

\begin{align*} y &= x \,p^{2}+p^{2}\tag {1A} \end{align*}

This has the form

\begin{align*} y=xf(p)+g(p)\tag {*} \end{align*}

Where \(f,g\) are functions of \(p=y'(x)\). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. \(x\) gives

\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}

Comparing the form \(y=x f + g\) to (1A) shows that

\begin{align*} f &= p^{2}\\ g &= p^{2} \end{align*}

Hence (2) becomes

\begin{align*} -p^{2}+p = \left (2 x p +2 p \right ) p^{\prime }\left (x \right )\tag {2A} \end{align*}

The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives

\begin{align*} -p^{2}+p = 0 \end{align*}

Solving the above for \(p\) results in

\begin{align*} p_{1} &=0\\ p_{2} &=1 \end{align*}

Substituting these in (1A) and keeping singular solution that verifies the ode gives

\begin{align*} y = 0\\ y = x +1 \end{align*}

The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in

\begin{align*} p^{\prime }\left (x \right ) = \frac {-p \left (x \right )^{2}+p \left (x \right )}{2 p \left (x \right ) x +2 p \left (x \right )}\tag {3} \end{align*}

This ODE is now solved for \(p \left (x \right )\). No inversion is needed. In canonical form a linear first order is

\begin{align*} p^{\prime }\left (x \right ) + q(x)p \left (x \right ) &= p(x) \end{align*}

Comparing the above to the given ode shows that

\begin{align*} q(x) &=\frac {1}{2 x +2}\\ p(x) &=\frac {1}{2 x +2} \end{align*}

The integrating factor \(\mu \) is

\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \frac {1}{2 x +2}d x}\\ &= \sqrt {x +1} \end{align*}

The ode becomes

\begin{align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu p\right ) &= \mu p \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu p\right ) &= \left (\mu \right ) \left (\frac {1}{2 x +2}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (p \sqrt {x +1}\right ) &= \left (\sqrt {x +1}\right ) \left (\frac {1}{2 x +2}\right ) \\ \mathrm {d} \left (p \sqrt {x +1}\right ) &= \left (\frac {1}{2 \sqrt {x +1}}\right )\, \mathrm {d} x \\ \end{align*}

Integrating gives

\begin{align*} p \sqrt {x +1}&= \int {\frac {1}{2 \sqrt {x +1}} \,dx} \\ &=\sqrt {x +1} + c_1 \end{align*}

Dividing throughout by the integrating factor \(\sqrt {x +1}\) gives the final solution

\[ p \left (x \right ) = \frac {\sqrt {x +1}+c_1}{\sqrt {x +1}} \]

Substituing the above solution for \(p\) in (2A) gives

\begin{align*} y = \frac {x \left (\sqrt {x +1}+c_1 \right )^{2}}{x +1}+\frac {\left (\sqrt {x +1}+c_1 \right )^{2}}{x +1}\\ \end{align*}

1.29.2 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {\sqrt {\left (x +1\right ) y}}{x +1}, y^{\prime }=-\frac {\sqrt {\left (x +1\right ) y}}{x +1}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {\sqrt {\left (x +1\right ) y}}{x +1} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=-\frac {\sqrt {\left (x +1\right ) y}}{x +1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]

1.29.3 Maple trace
Methods for first order ODEs:
 
1.29.4 Maple dsolve solution

Solving time : 0.023 (sec)
Leaf size : 53

dsolve(y(x) = x*diff(y(x),x)^2+diff(y(x),x)^2, 
       y(x),singsol=all)
 
\begin{align*} y &= 0 \\ y &= \frac {\left (x +1+\sqrt {\left (x +1\right ) \left (1+c_1 \right )}\right )^{2}}{x +1} \\ y &= \frac {\left (-x -1+\sqrt {\left (x +1\right ) \left (1+c_1 \right )}\right )^{2}}{x +1} \\ \end{align*}
1.29.5 Mathematica DSolve solution

Solving time : 0.065 (sec)
Leaf size : 57

DSolve[{y[x]==x*(D[y[x],x])^2+(D[y[x],x])^2,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x-c_1 \sqrt {x+1}+1+\frac {c_1{}^2}{4} \\ y(x)\to x+c_1 \sqrt {x+1}+1+\frac {c_1{}^2}{4} \\ y(x)\to 0 \\ \end{align*}