2.1.34 Problem 35
Internal
problem
ID
[10020]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
35
Date
solved
:
Monday, December 08, 2025 at 07:05:23 PM
CAS
classification
:
[[_homogeneous, `class G`], _exact, _rational, _Bernoulli]
2.1.34.1 Solved using first_order_ode_bernoulli
0.138 (sec)
Entering first order ode bernoulli solver
\begin{align*}
y^{2}+\frac {2}{x}+2 x y y^{\prime }&=0 \\
\end{align*}
In canonical form, the ODE is
\begin{align*} y' &= F(x,y)\\ &= -\frac {x \,y^{2}+2}{2 x^{2} y} \end{align*}
This is a Bernoulli ODE.
\[ y' = \left (-\frac {1}{2 x}\right ) y + \left (-\frac {1}{x^{2}}\right )\frac {1}{y} \tag {1} \]
The standard Bernoulli ODE has the form \[ y' = f_0(x)y+f_1(x)y^n \tag {2} \]
Comparing this to (1)
shows that \begin{align*} f_0 &=-\frac {1}{2 x}\\ f_1 &=-\frac {1}{x^{2}} \end{align*}
The first step is to divide the above equation by \(y^n \) which gives
\[ \frac {y'}{y^n} = f_0(x) y^{1-n} +f_1(x) \tag {3} \]
The next step is use the
substitution \(v = y^{1-n}\) in equation (3) which generates a new ODE in \(v \left (x \right )\) which will be linear and can be
easily solved using an integrating factor. Backsubstitution then gives the solution \(y(x)\) which is what
we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\begin{align*} f_0(x)&=-\frac {1}{2 x}\\ f_1(x)&=-\frac {1}{x^{2}}\\ n &=-1 \end{align*}
Dividing both sides of ODE (1) by \(y^n=\frac {1}{y}\) gives
\begin{align*} y'y &= -\frac {y^{2}}{2 x} -\frac {1}{x^{2}} \tag {4} \end{align*}
Let
\begin{align*} v &= y^{1-n} \\ &= y^{2} \tag {5} \end{align*}
Taking derivative of equation (5) w.r.t \(x\) gives
\begin{align*} v' &= 2 yy' \tag {6} \end{align*}
Substituting equations (5) and (6) into equation (4) gives
\begin{align*} \frac {v^{\prime }\left (x \right )}{2}&= -\frac {v \left (x \right )}{2 x}-\frac {1}{x^{2}}\\ v' &= -\frac {v}{x}-\frac {2}{x^{2}} \tag {7} \end{align*}
The above now is a linear ODE in \(v \left (x \right )\) which is now solved.
In canonical form a linear first order is
\begin{align*} v^{\prime }\left (x \right ) + q(x)v \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=\frac {1}{x}\\ p(x) &=-\frac {2}{x^{2}} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \frac {1}{x}d x}\\ &= x \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu v\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu v\right ) &= \left (\mu \right ) \left (-\frac {2}{x^{2}}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (v x\right ) &= \left (x\right ) \left (-\frac {2}{x^{2}}\right ) \\
\mathrm {d} \left (v x\right ) &= \left (-\frac {2}{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives \begin{align*} v x&= \int {-\frac {2}{x} \,dx} \\ &=-2 \ln \left (x \right ) + c_1 \end{align*}
Dividing throughout by the integrating factor \(x\) gives the final solution
\[ v \left (x \right ) = \frac {-2 \ln \left (x \right )+c_1}{x} \]
The substitution \(v = y^{1-n}\) is
now used to convert the above solution back to \(y\) which results in \[
y^{2} = \frac {-2 \ln \left (x \right )+c_1}{x}
\]
Solving for \(y\) gives \begin{align*}
y &= \frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
y &= -\frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
\end{align*}
Figure 2.89: Slope field \(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= \frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
y &= -\frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
\end{align*}
2.1.34.2 Solved using first_order_ode_exact
0.755 (sec)
Entering first order ode exact solver
\begin{align*}
y^{2}+\frac {2}{x}+2 x y y^{\prime }&=0 \\
\end{align*}
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives \[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence \begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that \begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is \[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \]
Therefore \begin{align*} \left (2 x y\right )\mathop {\mathrm {d}y} &= \left (-y^{2}-\frac {2}{x}\right )\mathop {\mathrm {d}x}\\ \left (y^{2}+\frac {2}{x}\right )\mathop {\mathrm {d}x} + \left (2 x y\right )\mathop {\mathrm {d}y} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(x,y) &= y^{2}+\frac {2}{x}\\ N(x,y) &= 2 x y \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \]
Using result found above gives \begin{align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (y^{2}+\frac {2}{x}\right )\\ &= 2 y \end{align*}
And
\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (2 x y\right )\\ &= 2 y \end{align*}
Since \(\frac {\partial M}{\partial y}= \frac {\partial N}{\partial x}\) , then the ODE is exact The following equations are now set up to solve for the function \(\phi \left (x,y\right )\)
\begin{align*} \frac {\partial \phi }{\partial x } &= M\tag {1} \\ \frac {\partial \phi }{\partial y } &= N\tag {2} \end{align*}
Integrating (1) w.r.t. \(x\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int M\mathop {\mathrm {d}x} \\
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int y^{2}+\frac {2}{x}\mathop {\mathrm {d}x} \\
\tag{3} \phi &= x \,y^{2}+2 \ln \left (x \right )+ f(y) \\
\end{align*}
Where \(f(y)\) is used for the constant of integration since \(\phi \) is a function of
both \(x\) and \(y\) . Taking derivative of equation (3) w.r.t \(y\) gives \begin{equation}
\tag{4} \frac {\partial \phi }{\partial y} = 2 x y+f'(y)
\end{equation}
But equation (2) says that \(\frac {\partial \phi }{\partial y} = 2 x y\) . Therefore
equation (4) becomes \begin{equation}
\tag{5} 2 x y = 2 x y+f'(y)
\end{equation}
Solving equation (5) for \( f'(y)\) gives \[ f'(y) = 0 \]
Therefore \[ f(y) = c_1 \]
Where \(c_1\) is constant of
integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi \) \[
\phi = x \,y^{2}+2 \ln \left (x \right )+ c_1
\]
But since \(\phi \) itself is a constant
function, then let \(\phi =c_2\) where \(c_2\) is new constant and combining \(c_1\) and \(c_2\) constants into the constant \(c_1\) gives
the solution as \[
c_1 = x \,y^{2}+2 \ln \left (x \right )
\]
Solving for \(y\) gives \begin{align*}
y &= \frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
y &= -\frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
\end{align*}
Figure 2.90: Slope field \(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= \frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
y &= -\frac {\sqrt {-x \left (2 \ln \left (x \right )-c_1 \right )}}{x} \\
\end{align*}
2.1.34.3 Solved using first_order_ode_isobaric
1.066 (sec)
Entering first order ode isobaric solver
\begin{align*}
y^{2}+\frac {2}{x}+2 x y y^{\prime }&=0 \\
\end{align*}
Solving for \(y'\) gives \begin{align*}
\tag{1} y' &= -\frac {y^{2} x +2}{2 x^{2} y} \\
\end{align*}
Each of the above ode’s is now
solved An ode \(y^{\prime }=f(x,y)\) is isobaric if \[ f(t x, t^m y) = t^{m-1} f(x,y)\tag {1} \]
Where here \[ f(x,y) = -\frac {y^{2} x +2}{2 x^{2} y}\tag {2} \]
\(m\) is the order of isobaric. Substituting (2) into
(1) and solving for \(m\) gives \[ m = -{\frac {1}{2}} \]
Since the ode is isobaric of order \(m=-{\frac {1}{2}}\) , then the substitution
\begin{align*} y&=u x^m \\ &=\frac {u}{\sqrt {x}} \end{align*}
Converts the ODE to a separable in \(u \left (x \right )\) . Performing this substitution gives
\[ -\frac {u \left (x \right )}{2 x^{{3}/{2}}}+\frac {u^{\prime }\left (x \right )}{\sqrt {x}} = -\frac {u \left (x \right )^{2}+2}{2 x^{{3}/{2}} u \left (x \right )} \]
The ode \begin{equation}
u^{\prime }\left (x \right ) = -\frac {1}{x u \left (x \right )}
\end{equation}
is separable as
it can be written as \begin{align*} u^{\prime }\left (x \right )&= -\frac {1}{x u \left (x \right )}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {1}{u} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { u\,du} &= \int { -\frac {1}{x} \,dx} \\
\end{align*}
\[
\frac {u \left (x \right )^{2}}{2}=\ln \left (\frac {1}{x}\right )+c_1
\]
Converting \(\frac {u \left (x \right )^{2}}{2} = \ln \left (\frac {1}{x}\right )+c_1\) back to \(y\) gives \begin{align*} \frac {y^{2} x}{2} = \ln \left (\frac {1}{x}\right )+c_1 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \frac {\sqrt {2}\, \sqrt {x \left (\ln \left (\frac {1}{x}\right )+c_1 \right )}}{x} \\
y &= -\frac {\sqrt {2}\, \sqrt {x \left (\ln \left (\frac {1}{x}\right )+c_1 \right )}}{x} \\
\end{align*}
Figure 2.91: Slope field \(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= \frac {\sqrt {2}\, \sqrt {x \left (\ln \left (\frac {1}{x}\right )+c_1 \right )}}{x} \\
y &= -\frac {\sqrt {2}\, \sqrt {x \left (\ln \left (\frac {1}{x}\right )+c_1 \right )}}{x} \\
\end{align*}
2.1.34.4 Solved using first_order_ode_homog_type_G
0.097 (sec)
Entering first order ode homog type G solver
\begin{align*}
y^{2}+\frac {2}{x}+2 x y y^{\prime }&=0 \\
\end{align*}
Multiplying the right side of the ode, which is \(-\frac {x \,y^{2}+2}{2 x^{2} y}\) by \(\frac {x}{y}\)
gives \begin{align*} y^{\prime } &= \left (\frac {x}{y}\right ) -\frac {x \,y^{2}+2}{2 x^{2} y}\\ &= -\frac {x \,y^{2}+2}{2 x \,y^{2}}\\ &= F(x,y) \end{align*}
Since \(F \left (x , y\right )\) has \(y\) , then let
\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , y\right )\right )\\ &= \frac {1}{x \,y^{2}}\\ f_y&= y \left (\frac {\partial }{\partial y}F \left (x , y\right )\right )\\ &= \frac {2}{x \,y^{2}}\\ \alpha &= \frac {f_x}{f_y} \\ &={\frac {1}{2}} \end{align*}
Since \(\alpha \) is independent of \(x,y\) then this is Homogeneous type G.
Let
\begin{align*} y&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\sqrt {x}} \end{align*}
Substituting the above back into \(F(x,y)\) gives
\begin{align*} F \left (z \right ) &=-\frac {z^{2}+2}{2 z^{2}} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(y\) . If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (x \right )- c_1 - \int ^{y x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (x \right )-c_1 +\int _{}^{y \sqrt {x}}\frac {1}{z \left (-\frac {1}{2}+\frac {z^{2}+2}{2 z^{2}}\right )}d z = 0
\]
Figure 2.92: Slope field \(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
\ln \left (x \right )-c_1 +\int _{}^{y \sqrt {x}}\frac {1}{z \left (-\frac {1}{2}+\frac {z^{2}+2}{2 z^{2}}\right )}d z &= 0 \\
\end{align*}
2.1.34.5 Solved using first_order_ode_LIE
1.350 (sec)
Entering first order ode LIE solver
\begin{align*}
y^{2}+\frac {2}{x}+2 x y y^{\prime }&=0 \\
\end{align*}
Writing the ode as \begin{align*} y^{\prime }&=-\frac {x \,y^{2}+2}{2 x^{2} y}\\ y^{\prime }&= \omega \left ( x,y\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as
anstaz gives
\begin{align*}
\tag{1E} \xi &= x a_{2}+y a_{3}+a_{1} \\
\tag{2E} \eta &= x b_{2}+y b_{3}+b_{1} \\
\end{align*}
Where the unknown coefficients are \[
\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\}
\]
Substituting equations (1E,2E) and \(\omega \) into (A)
gives \begin{equation}
\tag{5E} b_{2}-\frac {\left (x \,y^{2}+2\right ) \left (b_{3}-a_{2}\right )}{2 x^{2} y}-\frac {\left (x \,y^{2}+2\right )^{2} a_{3}}{4 x^{4} y^{2}}-\left (-\frac {y}{2 x^{2}}+\frac {x \,y^{2}+2}{x^{3} y}\right ) \left (x a_{2}+y a_{3}+a_{1}\right )-\left (-\frac {1}{x}+\frac {x \,y^{2}+2}{2 x^{2} y^{2}}\right ) \left (x b_{2}+y b_{3}+b_{1}\right ) = 0
\end{equation}
Putting the above in normal form gives \[
\frac {6 b_{2} x^{4} y^{2}-3 x^{2} y^{4} a_{3}+2 x^{3} y^{2} b_{1}-2 x^{2} y^{3} a_{1}-4 x^{3} b_{2}-4 x^{2} y a_{2}-8 x^{2} y b_{3}-12 x \,y^{2} a_{3}-4 x^{2} b_{1}-8 x y a_{1}-4 a_{3}}{4 x^{4} y^{2}} = 0
\]
Setting the numerator to zero gives \begin{equation}
\tag{6E} 6 b_{2} x^{4} y^{2}-3 x^{2} y^{4} a_{3}+2 x^{3} y^{2} b_{1}-2 x^{2} y^{3} a_{1}-4 x^{3} b_{2}-4 x^{2} y a_{2}-8 x^{2} y b_{3}-12 x \,y^{2} a_{3}-4 x^{2} b_{1}-8 x y a_{1}-4 a_{3} = 0
\end{equation}
Looking at
the above PDE shows the following are all the terms with \(\{x, y\}\) in them. \[
\{x, y\}
\]
The following substitution is
now made to be able to collect on all terms with \(\{x, y\}\) in them \[
\{x = v_{1}, y = v_{2}\}
\]
The above PDE (6E) now becomes \begin{equation}
\tag{7E} -3 a_{3} v_{1}^{2} v_{2}^{4}+6 b_{2} v_{1}^{4} v_{2}^{2}-2 a_{1} v_{1}^{2} v_{2}^{3}+2 b_{1} v_{1}^{3} v_{2}^{2}-4 a_{2} v_{1}^{2} v_{2}-12 a_{3} v_{1} v_{2}^{2}-4 b_{2} v_{1}^{3}-8 b_{3} v_{1}^{2} v_{2}-8 a_{1} v_{1} v_{2}-4 b_{1} v_{1}^{2}-4 a_{3} = 0
\end{equation}
Collecting the above on the terms \(v_i\) introduced, and these are \[
\{v_{1}, v_{2}\}
\]
Equation (7E) now
becomes \begin{equation}
\tag{8E} 6 b_{2} v_{1}^{4} v_{2}^{2}+2 b_{1} v_{1}^{3} v_{2}^{2}-4 b_{2} v_{1}^{3}-3 a_{3} v_{1}^{2} v_{2}^{4}-2 a_{1} v_{1}^{2} v_{2}^{3}+\left (-4 a_{2}-8 b_{3}\right ) v_{1}^{2} v_{2}-4 b_{1} v_{1}^{2}-12 a_{3} v_{1} v_{2}^{2}-8 a_{1} v_{1} v_{2}-4 a_{3} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the following equations to solve
\begin{align*} -8 a_{1}&=0\\ -2 a_{1}&=0\\ -12 a_{3}&=0\\ -4 a_{3}&=0\\ -3 a_{3}&=0\\ -4 b_{1}&=0\\ 2 b_{1}&=0\\ -4 b_{2}&=0\\ 6 b_{2}&=0\\ -4 a_{2}-8 b_{3}&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} a_{1}&=0\\ a_{2}&=-2 b_{3}\\ a_{3}&=0\\ b_{1}&=0\\ b_{2}&=0\\ b_{3}&=b_{3} \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= -2 x \\
\eta &= y \\
\end{align*}
Shifting is now applied to make \(\xi =0\) in order to simplify the rest of the
computation \begin{align*} \eta &= \eta - \omega \left (x,y\right ) \xi \\ &= y - \left (-\frac {x \,y^{2}+2}{2 x^{2} y}\right ) \left (-2 x\right ) \\ &= -\frac {2}{x y}\\ \xi &= 0 \end{align*}
The next step is to determine the canonical coordinates \(R,S\) . The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\)
are the canonical coordinates which make the original ode become a quadrature and hence solved
by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\) . Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\) . Since \(\xi =0\) then in this
special case
\begin{align*} R = x \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{-\frac {2}{x y}}} dy \end{align*}
Which results in
\begin{align*} S&= -\frac {x \,y^{2}}{4} \end{align*}
Now that \(R,S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{x} + \omega (x,y) S_{y} }{ R_{x} + \omega (x,y) R_{y} }\tag {2} \end{align*}
Where in the above \(R_{x},R_{y},S_{x},S_{y}\) are all partial derivatives and \(\omega (x,y)\) is the right hand side of the original ode
given by
\begin{align*} \omega (x,y) &= -\frac {x \,y^{2}+2}{2 x^{2} y} \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{x} &= 1\\ R_{y} &= 0\\ S_{x} &= -\frac {y^{2}}{4}\\ S_{y} &= -\frac {x y}{2} \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= \frac {1}{2 x}\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of \(R,S\)
from the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= \frac {1}{2 R} \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\) .
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\) , then we only need to integrate \(f(R)\) .
\begin{align*} \int {dS} &= \int {\frac {1}{2 R}\, dR}\\ S \left (R \right ) &= \frac {\ln \left (R \right )}{2} + c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(x,y\) coordinates. This results
in
\begin{align*} -\frac {y^{2} x}{4} = \frac {\ln \left (x \right )}{2}+c_2 \end{align*}
The following diagram shows solution curves of the original ode and how they transform in the
canonical coordinates space using the mapping shown.
Original ode in \(x,y\) coordinates
Canonical coordinates
transformation
ODE in canonical coordinates \((R,S)\)
\( \frac {dy}{dx} = -\frac {x \,y^{2}+2}{2 x^{2} y}\)
\( \frac {d S}{d R} = \frac {1}{2 R}\)
\(\!\begin {aligned} R&= x\\ S&= -\frac {x \,y^{2}}{4} \end {aligned} \)
Solving for \(y\) gives
\begin{align*}
y &= \frac {\sqrt {-2 x \left (\ln \left (x \right )+2 c_2 \right )}}{x} \\
y &= -\frac {\sqrt {-2 x \left (\ln \left (x \right )+2 c_2 \right )}}{x} \\
\end{align*}
Figure 2.93: Slope field \(y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= \frac {\sqrt {-2 x \left (\ln \left (x \right )+2 c_2 \right )}}{x} \\
y &= -\frac {\sqrt {-2 x \left (\ln \left (x \right )+2 c_2 \right )}}{x} \\
\end{align*}
2.1.34.6 ✓ Maple. Time used: 0.004 (sec). Leaf size: 36
ode := y ( x )^2+2/ x +2* y ( x )* diff ( y ( x ), x )* x = 0;
dsolve ( ode , y ( x ), singsol=all);
\begin{align*}
y &= \frac {\sqrt {x \left (-2 \ln \left (x \right )+c_1 \right )}}{x} \\
y &= -\frac {\sqrt {x \left (-2 \ln \left (x \right )+c_1 \right )}}{x} \\
\end{align*}
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right )^{2}+\frac {2}{x}+2 y \left (x \right ) x \left (\frac {d}{d x}y \left (x \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \square & {} & \textrm {Check if ODE is exact}\hspace {3pt} \\ {} & \circ & \textrm {ODE is exact if the lhs is the total derivative of a}\hspace {3pt} C^{2}\hspace {3pt}\textrm {function}\hspace {3pt} \\ {} & {} & \frac {d}{d x}G \left (x , y \left (x \right )\right )=0 \\ {} & \circ & \textrm {Compute derivative of lhs}\hspace {3pt} \\ {} & {} & \frac {\partial }{\partial x}G \left (x , y\right )+\left (\frac {\partial }{\partial y}G \left (x , y\right )\right ) \left (\frac {d}{d x}y \left (x \right )\right )=0 \\ {} & \circ & \textrm {Evaluate derivatives}\hspace {3pt} \\ {} & {} & 2 y =2 y \\ {} & \circ & \textrm {Condition met, ODE is exact}\hspace {3pt} \\ \bullet & {} & \textrm {Exact ODE implies solution will be of this form}\hspace {3pt} \\ {} & {} & \left [G \left (x , y\right )=\mathit {C1} , M \left (x , y\right )=\frac {\partial }{\partial x}G \left (x , y\right ), N \left (x , y\right )=\frac {\partial }{\partial y}G \left (x , y\right )\right ] \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} G \left (x , y\right )\hspace {3pt}\textrm {by integrating}\hspace {3pt} M \left (x , y\right )\hspace {3pt}\textrm {with respect to}\hspace {3pt} x \\ {} & {} & G \left (x , y\right )=\int \left (y^{2}+\frac {2}{x}\right )d x +\textit {\_F1} \left (y \right ) \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & G \left (x , y\right )=y^{2} x +2 \ln \left (x \right )+\textit {\_F1} \left (y \right ) \\ \bullet & {} & \textrm {Take derivative of}\hspace {3pt} G \left (x , y\right )\hspace {3pt}\textrm {with respect to}\hspace {3pt} y \\ {} & {} & N \left (x , y\right )=\frac {\partial }{\partial y}G \left (x , y\right ) \\ \bullet & {} & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & 2 y x =2 y x +\frac {d}{d y}\textit {\_F1} \left (y \right ) \\ \bullet & {} & \textrm {Isolate for}\hspace {3pt} \frac {d}{d y}\textit {\_F1} \left (y \right ) \\ {} & {} & \frac {d}{d y}\textit {\_F1} \left (y \right )=0 \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_F1} \left (y \right ) \\ {} & {} & \textit {\_F1} \left (y \right )=0 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_F1} \left (y \right )\hspace {3pt}\textrm {into equation for}\hspace {3pt} G \left (x , y\right ) \\ {} & {} & G \left (x , y\right )=y^{2} x +2 \ln \left (x \right ) \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} G \left (x , y\right )\hspace {3pt}\textrm {into the solution of the ODE}\hspace {3pt} \\ {} & {} & y^{2} x +2 \ln \left (x \right )=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \left \{y \left (x \right )=\frac {\sqrt {-x \left (2 \ln \left (x \right )-\mathit {C1} \right )}}{x}, y \left (x \right )=-\frac {\sqrt {-x \left (2 \ln \left (x \right )-\mathit {C1} \right )}}{x}\right \} \end {array} \]
2.1.34.7 ✓ Mathematica. Time used: 0.115 (sec). Leaf size: 44
ode =( y [ x ]^2+2/ x )+2* y [ x ]* x * D [ y [ x ], x ]==0;
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to -\frac {\sqrt {-2 \log (x)+c_1}}{\sqrt {x}}\\ y(x)&\to \frac {\sqrt {-2 \log (x)+c_1}}{\sqrt {x}} \end{align*}
2.1.34.8 ✓ Sympy. Time used: 0.305 (sec). Leaf size: 29
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(2*x*y(x)*Derivative(y(x), x) + y(x)**2 + 2/x,0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
\left [ y{\left (x \right )} = - \sqrt {\frac {C_{1} - 2 \log {\left (x \right )}}{x}}, \ y{\left (x \right )} = \sqrt {\frac {C_{1} - 2 \log {\left (x \right )}}{x}}\right ]
\]