Internal
problem
ID
[7744]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
52
Date
solved
:
Tuesday, October 22, 2024 at 02:29:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \end{align*}
1.52.3 Maple dsolve solution
Solving time : 0.015
(sec)
Leaf size : 80
dsolve(diff(diff(y(t),t),t)+(t^2-1)/t*diff(y(t),t)+t^2/(1+exp(1/2*t^2))^2*y(t) = 0,
y(t),singsol=all)
\[
y = \frac {\left (c_1 \left ({\mathrm e}^{\frac {t^{2}}{2}}\right )^{\frac {i \sqrt {3}}{2}} \left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{-\frac {i \sqrt {3}}{2}}+c_2 \left ({\mathrm e}^{\frac {t^{2}}{2}}\right )^{-\frac {i \sqrt {3}}{2}} \left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{\frac {i \sqrt {3}}{2}}\right ) \sqrt {1+{\mathrm e}^{\frac {t^{2}}{2}}}}{\sqrt {{\mathrm e}^{\frac {t^{2}}{2}}}}
\]
1.52.4 Mathematica DSolve solution
Solving time : 0.141
(sec)
Leaf size : 72
DSolve[{D[y[t],{t,2}]+(t^2-1)/t*D[y[t],t]+t^2/(1 + Exp[t^2/2])^2*y[t]==0,{}},
y[t],t,IncludeSingularSolutions->True]
\[
y(t)\to e^{\text {arctanh}\left (2 e^{\frac {t^2}{2}}+1\right )} \left (c_2 \cos \left (\sqrt {3} \text {arctanh}\left (2 e^{\frac {t^2}{2}}+1\right )\right )-c_1 \sin \left (\sqrt {3} \text {arctanh}\left (2 e^{\frac {t^2}{2}}+1\right )\right )\right )
\]