Internal
problem
ID
[7756]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
64
Date
solved
:
Tuesday, October 22, 2024 at 02:29:50 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]
1.64.3 Maple dsolve solution
Solving time : 0.101
(sec)
Leaf size : 106
dsolve(y(x)^2*diff(diff(y(x),x),x) = x,
y(x),singsol=all)
\[
y = \operatorname {RootOf}\left (\ln \left (x \right )+2^{{1}/{3}} \left (\int _{}^{\textit {\_Z}}\frac {1}{2^{{1}/{3}} \textit {\_f} +2 \operatorname {RootOf}\left (\operatorname {AiryBi}\left (\frac {2 \textit {\_Z}^{2} \textit {\_f} +2^{{2}/{3}}}{2 \textit {\_f}}\right ) c_1 \textit {\_Z} +\textit {\_Z} \operatorname {AiryAi}\left (\frac {2 \textit {\_Z}^{2} \textit {\_f} +2^{{2}/{3}}}{2 \textit {\_f}}\right )+\operatorname {AiryBi}\left (1, \frac {2 \textit {\_Z}^{2} \textit {\_f} +2^{{2}/{3}}}{2 \textit {\_f}}\right ) c_1 +\operatorname {AiryAi}\left (1, \frac {2 \textit {\_Z}^{2} \textit {\_f} +2^{{2}/{3}}}{2 \textit {\_f}}\right )\right )}d \textit {\_f} \right )-c_2 \right ) x
\]
1.64.4 Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{y[x]^2*D[y[x],{x,2}]==x,{}},
y[x],x,IncludeSingularSolutions->True]
Not solved