2.1.66 problem 66

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8454]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 66
Date solved : Thursday, December 12, 2024 at 09:10:08 AM
CAS classification : [NONE]

Solve

\begin{align*} 3 y y^{\prime \prime }&=\sin \left (x \right ) \end{align*}

Maple step by step solution

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2 
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases 
trying symmetries linear in x and y(x) 
trying differential order: 2; exact nonlinear 
trying 2nd order, integrating factor of the form mu(y) 
trying 2nd order, integrating factor of the form mu(x,y) 
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case 
trying 2nd order, integrating factor of the form mu(y,y) 
trying differential order: 2; mu polynomial in y 
trying 2nd order, integrating factor of the form mu(x,y) 
differential order: 2; looking for linear symmetries 
-> trying 2nd order, the S-function method 
   -> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function 
   -> trying 2nd order, the S-function method 
   -> trying 2nd order, No Point Symmetries Class V 
   -> trying 2nd order, No Point Symmetries Class V 
   -> trying 2nd order, No Point Symmetries Class V 
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case 
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^ 
--- Trying Lie symmetry methods, 2nd order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 5 
`, `-> Computing symmetries using: way = formal`
 
Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : maple_leaf_size

dsolve(3*y(x)*diff(diff(y(x),x),x) = sin(x), 
       y(x),singsol=all)
 
\[ \text {No solution found} \]
Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

DSolve[{3*y[x]*D[y[x],{x,2}]==Sin[x],{}}, 
       y[x],x,IncludeSingularSolutions->True]
 

Not solved