2.1.85 Problem 84

Solved using first_order_ode_riccati
Maple
Mathematica
Sympy

Internal problem ID [8797]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 84
Date solved : Sunday, March 30, 2025 at 01:37:36 PM
CAS classification : [_Riccati]

Solved using first_order_ode_riccati

Time used: 0.791 (sec)

Solve

y=x2+y21

In canonical form the ODE is

y=F(x,y)=x2+y21

This is a Riccati ODE. Comparing the ODE to solve

y=x2+y21

With Riccati ODE standard form

y=f0(x)+f1(x)y+f2(x)y2

Shows that f0(x)=x21, f1(x)=0 and f2(x)=1. Let

y=uf2u(1)=uu

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for u(x) which is

(2)f2u(x)(f2+f1f2)u(x)+f22f0u(x)=0

But

f2=0f1f2=0f22f0=x21

Substituting the above terms back in equation (2) gives

u(x)+(x21)u(x)=0

Unable to solve. Will ask Maple to solve this ode now.

Solution obtained is

u(x)=c1WhittakerM(i4,14,ix2)+c2WhittakerW(i4,14,ix2)x

Taking derivative gives

u(x)=2ic1((1214x2)WhittakerM(i4,14,ix2)+(143i4)WhittakerM(1+i4,14,ix2)x2)x+2ic2((1214x2)WhittakerW(i4,14,ix2)+iWhittakerW(1+i4,14,ix2)x2)xxc1WhittakerM(i4,14,ix2)+c2WhittakerW(i4,14,ix2)2x3/2

Doing change of constants, the solution becomes

y=(2ic5((1214x2)WhittakerM(i4,14,ix2)+(143i4)WhittakerM(1+i4,14,ix2)x2)x+2i((1214x2)WhittakerW(i4,14,ix2)+iWhittakerW(1+i4,14,ix2)x2)xxc5WhittakerM(i4,14,ix2)+WhittakerW(i4,14,ix2)2x3/2)xc5WhittakerM(i4,14,ix2)+WhittakerW(i4,14,ix2)

Which simplifies to

y=(3i)c5WhittakerM(1+i4,14,ix2)+4WhittakerW(1+i4,14,ix2)+(2ix2+i+1)c5WhittakerM(i4,14,ix2)+(2ix2+i+1)WhittakerW(i4,14,ix2)2x(c5WhittakerM(i4,14,ix2)+WhittakerW(i4,14,ix2))
Figure 2.154: Slope field y=x2+y21

Summary of solutions found

y=(3i)c5WhittakerM(1+i4,14,ix2)+4WhittakerW(1+i4,14,ix2)+(2ix2+i+1)c5WhittakerM(i4,14,ix2)+(2ix2+i+1)WhittakerW(i4,14,ix2)2x(c5WhittakerM(i4,14,ix2)+WhittakerW(i4,14,ix2))
Maple. Time used: 0.003 (sec). Leaf size: 85
ode:=diff(y(x),x) = x^2+y(x)^2-1; 
dsolve(ode,y(x), singsol=all);
 
y=(3i)WhittakerM(1+i4,14,ix2)+4WhittakerW(1+i4,14,ix2)c1+(2ix2+i+1)WhittakerM(i4,14,ix2)+(2ix2+i+1)c1WhittakerW(i4,14,ix2)2x(c1WhittakerW(i4,14,ix2)+WhittakerM(i4,14,ix2))

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati Special 
trying Riccati sub-methods: 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE, diff(diff(y(x),x),x) = (-x^2+1)*y(x), y(x) 
      *** Sublevel 2 *** 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      checking if the LODE has constant coefficients 
      checking if the LODE is of Euler type 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Whittaker 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
         <- Whittaker successful 
      <- special function solution successful 
   <- Riccati to 2nd Order successful
 

Maple step by step

Let’s solveddxy(x)=x2+y(x)21Highest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivativeddxy(x)=x2+y(x)21
Mathematica. Time used: 0.22 (sec). Leaf size: 153
ode=D[y[x],x]==x^2+y[x]^2-1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)i(xParabolicCylinderD(12i2,(1+i)x)+(1+i)ParabolicCylinderD(12i2,(1+i)x)c1xParabolicCylinderD(12+i2,(1+i)x)+(1i)c1ParabolicCylinderD(12+i2,(1+i)x))ParabolicCylinderD(12i2,(1+i)x)+c1ParabolicCylinderD(12+i2,(1+i)x)y(x)(1+i)ParabolicCylinderD(12+i2,(1+i)x)ParabolicCylinderD(12+i2,(1+i)x)ix
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list