2.1.14 problem 14

Solved as second order missing y ode
Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8497]
Book : Second order enumerated odes
Section : section 1
Problem number : 14
Date solved : Sunday, November 10, 2024 at 03:55:08 AM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

Solve

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \end{align*}

Solved as second order missing y ode

Time used: 0.095 (sec)

This is second order ode with missing dependent variable \(y\). Let

\begin{align*} p(x) &= y^{\prime } \end{align*}

Then

\begin{align*} p'(x) &= y^{\prime \prime } \end{align*}

Hence the ode becomes

\begin{align*} p^{\prime }\left (x \right )+p \left (x \right )^{2} = 0 \end{align*}

Which is now solve for \(p(x)\) as first order ode. Integrating gives

\begin{align*} \int -\frac {1}{p^{2}}d p &= dx\\ \frac {1}{p}&= x +c_1 \end{align*}

Singular solutions are found by solving

\begin{align*} -p^{2}&= 0 \end{align*}

for \(p \left (x \right )\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

\begin{align*} p \left (x \right ) = 0\\ p \left (x \right ) = 0 \end{align*}

Solving for \(p \left (x \right )\) gives

\begin{align*} p \left (x \right ) &= \frac {1}{x +c_1} \\ \end{align*}

For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is

\begin{align*} y^{\prime } = 0 \end{align*}

Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}

For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is

\begin{align*} y^{\prime } = \frac {1}{x +c_1} \end{align*}

Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {\frac {1}{x +c_1}\, dx}\\ y &= \ln \left (x +c_1 \right ) + c_3 \end{align*}

Will add steps showing solving for IC soon.

Summary of solutions found

\begin{align*} y &= c_2 \\ y &= \ln \left (x +c_1 \right )+c_3 \\ \end{align*}

Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right )^{2}+\frac {d^{2}}{d x^{2}}y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & u \left (x \right )^{2}+\frac {d}{d x}u \left (x \right )=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=-u \left (x \right )^{2} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}=-1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}d x =\int \left (-1\right )d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (x \right )}=\mathit {C1} -x \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {1}{\mathit {C1} -x} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {1}{\mathit {C1} -x} \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\frac {1}{\mathit {C1} -x} \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int -\frac {1}{\mathit {C1} -x}d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\ln \left (\mathit {C1} -x \right )+\mathit {C2} \end {array} \]

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
<- 2nd_order Liouville successful`
 
Maple dsolve solution

Solving time : 0.016 (sec)
Leaf size : 10

dsolve(diff(diff(y(x),x),x)+diff(y(x),x)^2 = 0, 
       y(x),singsol=all)
 
\[ y = \ln \left (c_{1} x +c_{2} \right ) \]
Mathematica DSolve solution

Solving time : 0.193 (sec)
Leaf size : 15

DSolve[{D[y[x],{x,2}]+(D[y[x],x])^2==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \log (x-c_1)+c_2 \]