2.1.14 Problem 14

2.1.14.1 second order ode missing x
2.1.14.2 Solved by factoring the differential equation
2.1.14.3 second order ode missing y
2.1.14.4 SSolved using second order ode arccos transformation
2.1.14.5 Maple
2.1.14.6 Mathematica
2.1.14.7 Sympy

Internal problem ID [10373]
Book : Second order enumerated odes
Section : section 1
Problem number : 14
Date solved : Monday, December 08, 2025 at 08:15:12 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.1.14.1 second order ode missing x

0.778 (sec)

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}

Then

\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}

Hence the ode becomes

\begin{align*} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+p \left (y \right )^{2} = 0 \end{align*}

Which is now solved as first order ode for \(p(y)\).

2.1.14.2 Solved by factoring the differential equation

Time used: 0.049 (sec)

\begin{align*} p p^{\prime }+p^{2}&=0 \\ \end{align*}
Writing the ode as
\begin{align*} \left (p\right )\left (p^{\prime }+p\right )&=0 \end{align*}

Therefore we need to solve the following equations

\begin{align*} \tag{1} p &= 0 \\ \tag{2} p^{\prime }+p &= 0 \\ \end{align*}
Now each of the above equations is solved in turn.

Solving equation (1)

Entering zero order ode solverSolving for \(p\) from

\begin{align*} p = 0 \end{align*}

Solving gives

\begin{align*} p &= 0 \\ \end{align*}
Solving equation (2)

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int -\frac {1}{p}d p &= dy\\ -\ln \left (p \right )&= y +c_1 \end{align*}

Singular solutions are found by solving

\begin{align*} -p&= 0 \end{align*}

for \(p\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

\begin{align*} p = 0 \end{align*}

Solving for \(p\) gives

\begin{align*} p &= 0 \\ p &= {\mathrm e}^{-y -c_1} \\ \end{align*}

Summary of solutions found

\begin{align*} p &= 0 \\ p &= {\mathrm e}^{-y -c_1} \\ \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}

Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}

For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is

\begin{align*} y^{\prime } = {\mathrm e}^{-y-c_1} \end{align*}

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int {\mathrm e}^{y +c_1}d y &= dx\\ {\mathrm e}^{y +c_1}&= x +c_3 \end{align*}

Simplifying the above gives

\begin{align*} {\mathrm e}^{y+c_1} &= x +c_3 \\ \end{align*}
Solving for \(y\) gives
\begin{align*} y &= -c_1 +\ln \left (x +c_3 \right ) \\ \end{align*}

Summary of solutions found

\begin{align*} y &= c_2 \\ y &= -c_1 +\ln \left (x +c_3 \right ) \\ \end{align*}
2.1.14.3 second order ode missing y

0.333 (sec)

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}
Entering second order ode missing \(y\) solverThis is second order ode with missing dependent variable \(y\). Let
\begin{align*} u(x) &= y^{\prime } \end{align*}

Then

\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}

Hence the ode becomes

\begin{align*} u^{\prime }\left (x \right )+u \left (x \right )^{2} = 0 \end{align*}

Which is now solved for \(u(x)\) as first order ode.

Entering first order ode autonomous solverIntegrating gives

\begin{align*} \int -\frac {1}{u^{2}}d u &= dx\\ \frac {1}{u}&= x +c_1 \end{align*}

Singular solutions are found by solving

\begin{align*} -u^{2}&= 0 \end{align*}

for \(u \left (x \right )\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

\begin{align*} u \left (x \right ) = 0 \end{align*}

Solving for \(u \left (x \right )\) gives

\begin{align*} u \left (x \right ) &= 0 \\ u \left (x \right ) &= \frac {1}{x +c_1} \\ \end{align*}
In summary, these are the solution found for \(y\)
\begin{align*} u \left (x \right ) &= 0 \\ u \left (x \right ) &= \frac {1}{x +c_1} \\ \end{align*}
For solution \(u \left (x \right ) = 0\), since \(u=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}

Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}

In summary, these are the solution found for \((y)\)

\begin{align*} y &= c_2 \\ \end{align*}
For solution \(u \left (x \right ) = \frac {1}{x +c_1}\), since \(u=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = \frac {1}{x +c_1} \end{align*}

Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).

\begin{align*} \int {dy} &= \int {\frac {1}{x +c_1}\, dx}\\ y &= \ln \left (x +c_1 \right ) + c_3 \end{align*}

In summary, these are the solution found for \((y)\)

\begin{align*} y &= \ln \left (x +c_1 \right )+c_3 \\ \end{align*}

Summary of solutions found

\begin{align*} y &= c_2 \\ y &= \ln \left (x +c_1 \right )+c_3 \\ \end{align*}
2.1.14.4 SSolved using second order ode arccos transformation

0.625 (sec)

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

Applying change of variable \(x = \arccos \left (\tau \right )\) to the above ode results in the following new ode

\[ \left (-\tau ^{2}+1\right ) \left (\frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )\right )-\left (\frac {d}{d \tau }y \left (\tau \right )\right ) \tau +\left (\frac {d}{d \tau }y \left (\tau \right )\right )^{2} \left (-\tau ^{2}+1\right ) = 0 \]
Which is now solved for \(y \left (\tau \right )\). Entering second order ode missing \(y\) solverThis is second order ode with missing dependent variable \(y \left (\tau \right )\). Let
\begin{align*} u(\tau ) &= \frac {d}{d \tau }y \left (\tau \right ) \end{align*}

Then

\begin{align*} u'(\tau ) &= \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right ) \end{align*}

Hence the ode becomes

\begin{align*} \left (-\tau ^{2}+1\right ) \left (\frac {d}{d \tau }u \left (\tau \right )\right )-u \left (\tau \right ) \tau +u \left (\tau \right )^{2} \left (-\tau ^{2}+1\right ) = 0 \end{align*}

Which is now solved for \(u(\tau )\) as first order ode.

Entering first order ode bernoulli solver In canonical form, the ODE is

\begin{align*} u' &= F(\tau ,u)\\ &= -\frac {u \left (\tau ^{2} u +\tau -u \right )}{\tau ^{2}-1} \end{align*}

This is a Bernoulli ODE.

\[ u' = \left (-\frac {\tau }{\tau ^{2}-1}\right ) u \left (\tau \right ) + \left (-1\right )u^{2} \tag {1} \]
The standard Bernoulli ODE has the form
\[ u' = f_0(\tau )u+f_1(\tau )u^n \tag {2} \]
Comparing this to (1) shows that
\begin{align*} f_0 &=-\frac {\tau }{\tau ^{2}-1}\\ f_1 &=-1 \end{align*}

The first step is to divide the above equation by \(u^n \) which gives

\[ \frac {u'}{u^n} = f_0(\tau ) u^{1-n} +f_1(\tau ) \tag {3} \]
The next step is use the substitution \(v = u^{1-n}\) in equation (3) which generates a new ODE in \(v \left (\tau \right )\) which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution \(u(\tau )\) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

\begin{align*} f_0(\tau )&=-\frac {\tau }{\tau ^{2}-1}\\ f_1(\tau )&=-1\\ n &=2 \end{align*}

Dividing both sides of ODE (1) by \(u^n=u^{2}\) gives

\begin{align*} u'\frac {1}{u^{2}} &= -\frac {\tau }{\left (\tau ^{2}-1\right ) u} -1 \tag {4} \end{align*}

Let

\begin{align*} v &= u^{1-n} \\ &= \frac {1}{u} \tag {5} \end{align*}

Taking derivative of equation (5) w.r.t \(\tau \) gives

\begin{align*} v' &= -\frac {1}{u^{2}}u' \tag {6} \end{align*}

Substituting equations (5) and (6) into equation (4) gives

\begin{align*} -\frac {d}{d \tau }v \left (\tau \right )&= -\frac {\tau v \left (\tau \right )}{\tau ^{2}-1}-1\\ v' &= \frac {\tau v}{\tau ^{2}-1}+1 \tag {7} \end{align*}

The above now is a linear ODE in \(v \left (\tau \right )\) which is now solved.

In canonical form a linear first order is

\begin{align*} \frac {d}{d \tau }v \left (\tau \right ) + q(\tau )v \left (\tau \right ) &= p(\tau ) \end{align*}

Comparing the above to the given ode shows that

\begin{align*} q(\tau ) &=-\frac {\tau }{\tau ^{2}-1}\\ p(\tau ) &=1 \end{align*}

The integrating factor \(\mu \) is

\begin{align*} \mu &= e^{\int {q\,d\tau }}\\ &= {\mathrm e}^{\int -\frac {\tau }{\tau ^{2}-1}d \tau }\\ &= \frac {1}{\sqrt {\tau ^{2}-1}} \end{align*}

The ode becomes

\begin{align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\tau }}\left ( \mu v\right ) &= \mu \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\tau }} \left (\frac {v}{\sqrt {\tau ^{2}-1}}\right ) &= \frac {1}{\sqrt {\tau ^{2}-1}}\\ \mathrm {d} \left (\frac {v}{\sqrt {\tau ^{2}-1}}\right ) &= \frac {1}{\sqrt {\tau ^{2}-1}}\mathrm {d} \tau \end{align*}

Integrating gives

\begin{align*} \frac {v}{\sqrt {\tau ^{2}-1}}&= \int {\frac {1}{\sqrt {\tau ^{2}-1}} \,d\tau } \\ &=\ln \left (\tau +\sqrt {\tau ^{2}-1}\right ) + c_1 \end{align*}

Dividing throughout by the integrating factor \(\frac {1}{\sqrt {\tau ^{2}-1}}\) gives the final solution

\[ v \left (\tau \right ) = \sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right ) \]
The substitution \(v = u^{1-n}\) is now used to convert the above solution back to \(u \left (\tau \right )\) which results in
\[ \frac {1}{u \left (\tau \right )} = \sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right ) \]
Solving for \(u \left (\tau \right )\) gives
\begin{align*} u \left (\tau \right ) &= \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right )} \\ \end{align*}
In summary, these are the solution found for \(y \left (\tau \right )\)
\begin{align*} u \left (\tau \right ) &= \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right )} \\ \end{align*}
For solution \(u \left (\tau \right ) = \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right )}\), since \(u=\frac {d}{d \tau }y \left (\tau \right )\) then we now have a new first order ode to solve which is
\begin{align*} \frac {d}{d \tau }y \left (\tau \right ) = \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right )} \end{align*}

Entering first order ode quadrature solverSince the ode has the form \(\frac {d}{d \tau }y \left (\tau \right )=f(\tau )\), then we only need to integrate \(f(\tau )\).

\begin{align*} \int {dy} &= \int {\frac {1}{\sqrt {\tau ^{2}-1}\, \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right )}\, d\tau }\\ y \left (\tau \right ) &= \ln \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right ) + c_2 \end{align*}

In summary, these are the solution found for \((y \left (\tau \right ))\)

\begin{align*} y \left (\tau \right ) &= \ln \left (\ln \left (\tau +\sqrt {\tau ^{2}-1}\right )+c_1 \right )+c_2 \\ \end{align*}
Applying change of variable \(\tau = \cos \left (x \right )\) to the solutions above gives
\begin{align*} y &= \ln \left (\ln \left (\cos \left (x \right )+\sqrt {\cos \left (x \right )^{2}-1}\right )+c_1 \right )+c_2 \\ \end{align*}
2.1.14.5 Maple. Time used: 0.007 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \ln \left (c_1 x +c_2 \right ) \]

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
<- 2nd_order Liouville successful
 

Maple step by step

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\left (\frac {d}{d x}y \left (x \right )\right )^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )+u \left (x \right )^{2}=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=-u \left (x \right )^{2} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}=-1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}d x =\int \left (-1\right )d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (x \right )}=-x +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {1}{-x +\mathit {C1}} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & u \left (x \right )=\frac {1}{-\mathit {C1} +x} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & u \left (x \right )=\frac {1}{\mathit {C1} +x} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\frac {1}{\mathit {C1} +x} \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {1}{\mathit {C1} +x} \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \frac {1}{\mathit {C1} +x}d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\ln \left (\mathit {C1} +x \right )+\mathit {C2} \end {array} \]
2.1.14.6 Mathematica. Time used: 0.123 (sec). Leaf size: 15
ode=D[y[x],{x,2}]+(D[y[x],x])^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
                                                                                  
                                                                                  
 
\begin{align*} y(x)&\to \log (x-c_1)+c_2 \end{align*}
2.1.14.7 Sympy. Time used: 0.312 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \log {\left (C_{2} + x \right )} \]