ID |
problem |
ODE |
1 |
\(y^{\prime \prime } = 0\) |
|
2 |
\({y^{\prime \prime }}^{2} = 0\) |
|
3 |
\({y^{\prime \prime }}^{n} = 0\) |
|
4 |
\(a y^{\prime \prime } = 0\) |
|
5 |
\(a {y^{\prime \prime }}^{2} = 0\) |
|
6 |
\(a {y^{\prime \prime }}^{n} = 0\) |
|
7 |
\(y^{\prime \prime } = 1\) |
|
8 |
\({y^{\prime \prime }}^{2} = 1\) |
|
9 |
\(y^{\prime \prime } = x\) |
|
10 |
\({y^{\prime \prime }}^{2} = x\) |
|
11 |
\({y^{\prime \prime }}^{3} = 0\) |
|
12 |
\(y^{\prime \prime }+y^{\prime } = 0\) |
|
13 |
\({y^{\prime \prime }}^{2}+y^{\prime } = 0\) |
|
14 |
\(y^{\prime \prime }+{y^{\prime }}^{2} = 0\) |
|
15 |
\(y^{\prime \prime }+y^{\prime } = 1\) |
|
16 |
\({y^{\prime \prime }}^{2}+y^{\prime } = 1\) |
|
17 |
\(y^{\prime \prime }+{y^{\prime }}^{2} = 1\) |
|
18 |
\(y^{\prime \prime }+y^{\prime } = x\) |
|
19 |
\({y^{\prime \prime }}^{2}+y^{\prime } = x\) |
|
20 |
\(y^{\prime \prime }+{y^{\prime }}^{2} = x\) |
|
21 |
\(y^{\prime \prime }+y^{\prime }+y = 0\) |
|
22 |
\({y^{\prime \prime }}^{2}+y^{\prime }+y = 0\) |
|
23 |
\(y^{\prime \prime }+{y^{\prime }}^{2}+y = 0\) |
|
24 |
\(y^{\prime \prime }+y^{\prime }+y = 1\) |
|
25 |
\(y^{\prime \prime }+y^{\prime }+y = x\) |
|
26 |
\(y^{\prime \prime }+y^{\prime }+y = x +1\) |
|
27 |
\(y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1\) |
|
28 |
\(y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1\) |
|
29 |
\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\) |
|
30 |
\(y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right )\) |
|
31 |
\(y^{\prime \prime }+y^{\prime } = 1\) |
|
32 |
\(y^{\prime \prime }+y^{\prime } = x\) |
|
33 |
\(y^{\prime \prime }+y^{\prime } = x +1\) |
|
34 |
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\) |
|
35 |
\(y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1\) |
|
36 |
\(y^{\prime \prime }+y^{\prime } = \sin \left (x \right )\) |
|
37 |
\(y^{\prime \prime }+y^{\prime } = \cos \left (x \right )\) |
|
38 |
\(y^{\prime \prime }+y = 1\) |
|
39 |
\(y^{\prime \prime }+y = x\) |
|
40 |
\(y^{\prime \prime }+y = x +1\) |
|
41 |
\(y^{\prime \prime }+y = x^{2}+x +1\) |
|
42 |
\(y^{\prime \prime }+y = x^{3}+x^{2}+x +1\) |
|
43 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
44 |
\(y^{\prime \prime }+y = \cos \left (x \right )\) |
|
45 |
\(y {y^{\prime \prime }}^{2}+y^{\prime } = 0\) |
|
46 |
\(y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0\) |
|
47 |
\(y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0\) |
|
48 |
\(y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0\) |
|
49 |
\(y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0\) |
|
50 |
\(y y^{\prime \prime }+{y^{\prime }}^{3} = 0\) |
|
51 |
\(y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0\) |
|
52 |
\(y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0\) |
|