2.1.3 Problem 3

Maple
Mathematica
Sympy

Internal problem ID [9074]
Book : Second order enumerated odes
Section : section 1
Problem number : 3
Date solved : Sunday, March 30, 2025 at 02:06:16 PM
CAS classification : [[_2nd_order, _quadrature]]

Maple. Time used: 0.003 (sec). Leaf size: 9
ode:=diff(diff(y(x),x),x)^n = 0; 
dsolve(ode,y(x), singsol=all);
 
y=c1x+c2

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
<- quadrature successful
 

Maple step by step

Let’s solve(ddxddxy(x))n=0Highest derivative means the order of the ODE is2ddxddxy(x)Isolate 2nd derivativeddxddxy(x)=0Characteristic polynomial of ODEr2=0Use quadratic formula to solve forrr=0±(0)2Roots of the characteristic polynomialr=01st solution of the ODEy1(x)=1Repeated root, multiplyy1(x)byxto ensure linear independencey2(x)=xGeneral solution of the ODEy(x)=C1y1(x)+C2y2(x)Substitute in solutionsy(x)=C2x+C1
Mathematica. Time used: 0.004 (sec). Leaf size: 24
ode=(D[y[x],{x,2}])^n==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)1201nx2+c2x+c1
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2))**n,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational