1.34 problem 34
Internal
problem
ID
[8071]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
34
Date
solved
:
Monday, October 21, 2024 at 04:47:21 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
Solve
\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \end{align*}
1.34.1 Solved as second order linear constant coeff ode
Time used: 0.121 (sec)
This is second order non-homogeneous ODE. In standard form the ODE is
\[ A y''(x) + B y'(x) + C y(x) = f(x) \]
Where \(A=1, B=1, C=0, f(x)=x^{2}+x +1\) .
Let the solution be
\[ y = y_h + y_p \]
Where \(y_h\) is the solution to the homogeneous ODE \( A y''(x) + B y'(x) + C y(x) = 0\) , and \(y_p\) is a
particular solution to the non-homogeneous ODE \(A y''(x) + B y'(x) + C y(x) = f(x)\) . \(y_h\) is the solution to
\[ y^{\prime \prime }+y^{\prime } = 0 \]
This is second
order with constant coefficients homogeneous ODE. In standard form the ODE is
\[ A y''(x) + B y'(x) + C y(x) = 0 \]
Where in the above \(A=1, B=1, C=0\) . Let the solution be \(y=e^{\lambda x}\) . Substituting this into the ODE gives
\[ \lambda ^{2} {\mathrm e}^{x \lambda }+\lambda \,{\mathrm e}^{x \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda x}\) gives
\[ \lambda ^{2}+\lambda = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the
general solution form.Using the quadratic formula
\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=1, C=0\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {-1}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {1^2 - (4) \left (1\right )\left (0\right )}\\ &= -{\frac {1}{2}} \pm {\frac {1}{2}} \end{align*}
Hence
\begin{align*}
\lambda _1 &= -{\frac {1}{2}} + {\frac {1}{2}} \\
\lambda _2 &= -{\frac {1}{2}} - {\frac {1}{2}} \\
\end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= 0 \\
\lambda _2 &= -1 \\
\end{align*}
Since roots are real and distinct, then the solution is
\begin{align*}
y &= c_1 e^{\lambda _1 x} + c_2 e^{\lambda _2 x} \\
y &= c_1 e^{\left (0\right )x} +c_2 e^{\left (-1\right )x} \\
\end{align*}
Or
\[
y =c_1 +c_2 \,{\mathrm e}^{-x}
\]
Therefore the homogeneous solution \(y_h\) is
\[
y_h = c_1 +c_2 \,{\mathrm e}^{-x}
\]
The particular solution is now found using the
method of undetermined coefficients. Looking at the RHS of the ode, which is
\[ x^{2}+x +1 \]
Shows
that the corresponding undetermined set of the basis functions (UC_set) for the
trial solution is
\[ [\{1, x, x^{2}\}] \]
While the set of the basis functions for the homogeneous solution
found earlier is
\[ \{1, {\mathrm e}^{-x}\} \]
Since \(1\) is duplicated in the UC_set, then this basis is multiplied
by extra \(x\) . The UC_set becomes
\[ [\{x, x^{2}, x^{3}\}] \]
Since there was duplication between the basis
functions in the UC_set and the basis functions of the homogeneous solution, the trial
solution is a linear combination of all the basis function in the above updated
UC_set.
\[
y_p = A_{3} x^{3}+A_{2} x^{2}+A_{1} x
\]
The unknowns \(\{A_{1}, A_{2}, A_{3}\}\) are found by substituting the above trial solution \(y_p\) into the
ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives
\[
3 x^{2} A_{3}+2 x A_{2}+6 x A_{3}+A_{1}+2 A_{2} = x^{2}+x +1
\]
Solving for the unknowns by comparing coefficients results
in
\[ \left [A_{1} = 2, A_{2} = -{\frac {1}{2}}, A_{3} = {\frac {1}{3}}\right ] \]
Substituting the above back in the above trial solution \(y_p\) , gives the particular
solution
\[
y_p = \frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 +c_2 \,{\mathrm e}^{-x}\right ) + \left (\frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x\right ) \\
\end{align*}
Will add steps showing solving for IC
soon.
Figure 102: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.2 Solved as second order linear exact ode
Time used: 0.106 (sec)
An ode of the form
\begin{align*} p \left (x \right ) y^{\prime \prime }+q \left (x \right ) y^{\prime }+r \left (x \right ) y&=s \left (x \right ) \end{align*}
is exact if
\begin{align*} p''(x) - q'(x) + r(x) &= 0 \tag {1} \end{align*}
For the given ode we have
\begin{align*} p(x) &= 1\\ q(x) &= 1\\ r(x) &= 0\\ s(x) &= x^{2}+x +1 \end{align*}
Hence
\begin{align*} p''(x) &= 0\\ q'(x) &= 0 \end{align*}
Therefore (1) becomes
\begin{align*} 0- \left (0\right ) + \left (0\right )&=0 \end{align*}
Hence the ode is exact. Since we now know the ode is exact, it can be written as
\begin{align*} \left (p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y\right )' &= s(x) \end{align*}
Integrating gives
\begin{align*} p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y&=\int {s \left (x \right )\, dx} \end{align*}
Substituting the above values for \(p,q,r,s\) gives
\begin{align*} y^{\prime }+y&=\int {x^{2}+x +1\, dx} \end{align*}
We now have a first order ode to solve which is
\begin{align*} y^{\prime }+y = \frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (y \,{\mathrm e}^{x}\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left (y \,{\mathrm e}^{x}\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} y \,{\mathrm e}^{x}&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {\left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right ) {\mathrm e}^{x}}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+c_2 \,{\mathrm e}^{-x} \]
Will add steps
showing solving for IC soon.
Figure 103: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.3 Solved as second order missing y ode
Time used: 0.095 (sec)
This is second order ode with missing dependent variable \(y\) . Let
\begin{align*} p(x) &= y^{\prime } \end{align*}
Then
\begin{align*} p'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} p^{\prime }\left (x \right )+p \left (x \right )-x^{2}-x -1 = 0 \end{align*}
Which is now solve for \(p(x)\) as first order ode. In canonical form a linear first order is
\begin{align*} p^{\prime }\left (x \right ) + q(x)p \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=x^{2}+x +1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu p\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu p\right ) &= \left (\mu \right ) \left (x^{2}+x +1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (p \,{\mathrm e}^{x}\right ) &= \left ({\mathrm e}^{x}\right ) \left (x^{2}+x +1\right ) \\
\mathrm {d} \left (p \,{\mathrm e}^{x}\right ) &= \left (\left (x^{2}+x +1\right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} p \,{\mathrm e}^{x}&= \int {\left (x^{2}+x +1\right ) {\mathrm e}^{x} \,dx} \\ &=\left (x^{2}-x +2\right ) {\mathrm e}^{x} + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ p \left (x \right ) = x^{2}-x +2+c_1 \,{\mathrm e}^{-x} \]
For solution
(1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = x^{2}-x +2+c_1 \,{\mathrm e}^{-x} \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\) , then we only need to integrate \(f(x)\) .
\begin{align*} \int {dy} &= \int {x^{2}-x +2+c_1 \,{\mathrm e}^{-x}\, dx}\\ y &= 2 x +\frac {x^{3}}{3}-c_1 \,{\mathrm e}^{-x}-\frac {x^{2}}{2} + c_2 \end{align*}
Will add steps showing solving for IC soon.
Figure 104: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.4 Solved as second order integrable as is ode
Time used: 0.125 (sec)
Integrating both sides of the ODE w.r.t \(x\) gives
\begin{align*} \int \left (y^{\prime \prime }+y^{\prime }\right )d x &= \int \left (x^{2}+x +1\right )d x\\ y^{\prime }+y = \frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x + c_1 \end{align*}
Which is now solved for \(y\) . In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (y \,{\mathrm e}^{x}\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left (y \,{\mathrm e}^{x}\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} y \,{\mathrm e}^{x}&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {\left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right ) {\mathrm e}^{x}}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+c_2 \,{\mathrm e}^{-x} \]
Will add steps
showing solving for IC soon.
Figure 105: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.5 Solved as second order integrable as is ode (ABC method)
Time used: 0.050 (sec)
Writing the ode as
\[
y^{\prime \prime }+y^{\prime } = x^{2}+x +1
\]
Integrating both sides of the ODE w.r.t \(x\) gives
\begin{align*} \int \left (y^{\prime \prime }+y^{\prime }\right )d x &= \int \left (x^{2}+x +1\right )d x\\ y^{\prime }+y = \frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
Which is now solved for \(y\) . In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (y \,{\mathrm e}^{x}\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left (y \,{\mathrm e}^{x}\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} y \,{\mathrm e}^{x}&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {\left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right ) {\mathrm e}^{x}}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+c_2 \,{\mathrm e}^{-x} \]
Will add steps
showing solving for IC soon.
Figure 106: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.6 Solved as second order ode using Kovacic algorithm
Time used: 0.066 (sec)
Writing the ode as
\begin{align*} y^{\prime \prime }+y^{\prime } &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= 1 \\ B &= 1\tag {3} \\ C &= 0 \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {1}{4}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= 1\\ t &= 4 \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= \frac {z \left (x \right )}{4} \tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3
cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \) . The following table
summarizes these cases.
Case
Allowed pole order for \(r\)
Allowed value for \(\mathcal {O}(\infty )\)
1
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \)
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \)
2
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\) . Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\) ,\(\{1,3\}\) ,\(\{2\}\) ,\(\{3\}\) ,\(\{3,4\}\) ,\(\{1,2,5\}\) .
no condition
3
\(\left \{ 1,2\right \} \)
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)
Table 19: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\) . Therefore
\begin{align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 0 - 0 \\ &= 0 \end{align*}
There are no poles in \(r\) . Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole
larger than \(2\) and the order at \(\infty \) is \(0\) then the necessary conditions for case one are met.
Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = {\frac {1}{4}}\) is not a function of \(x\) , then there is no need run Kovacic algorithm to obtain a solution
for transformed ode \(z''=r z\) as one solution is
\[ z_1(x) = {\mathrm e}^{-\frac {x}{2}} \]
Using the above, the solution for the original ode can
now be found. The first solution to the original ode in \(y\) is found from
\begin{align*}
y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\
&= z_1 e^{ -\int \frac {1}{2} \frac {1}{1} \,dx} \\
&= z_1 e^{-\frac {x}{2}} \\
&= z_1 \left ({\mathrm e}^{-\frac {x}{2}}\right ) \\
\end{align*}
Which simplifies to
\[
y_1 = {\mathrm e}^{-x}
\]
The second solution \(y_2\) to the original ode is found using reduction of order
\[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \]
Substituting gives
\begin{align*}
y_2 &= y_1 \int \frac { e^{\int -\frac {1}{1} \,dx}}{\left (y_1\right )^2} \,dx \\
&= y_1 \int \frac { e^{-x}}{\left (y_1\right )^2} \,dx \\
&= y_1 \left ({\mathrm e}^{x}\right ) \\
\end{align*}
Therefore the solution is
\begin{align*}
y &= c_1 y_1 + c_2 y_2 \\
&= c_1 \left ({\mathrm e}^{-x}\right ) + c_2 \left ({\mathrm e}^{-x}\left ({\mathrm e}^{x}\right )\right ) \\
\end{align*}
This is second order nonhomogeneous ODE. Let the solution be
\[
y = y_h + y_p
\]
Where \(y_h\) is the solution to
the homogeneous ODE \( A y''(x) + B y'(x) + C y(x) = 0\) , and \(y_p\) is a particular solution to the nonhomogeneous ODE \(A y''(x) + B y'(x) + C y(x) = f(x)\) . \(y_h\) is the
solution to
\[
y^{\prime \prime }+y^{\prime } = 0
\]
The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_h = c_1 \,{\mathrm e}^{-x}+c_2
\]
The particular solution is now found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is
\[ x^{2}+x +1 \]
Shows that the corresponding undetermined set of the basis
functions (UC_set) for the trial solution is
\[ [\{1, x, x^{2}\}] \]
While the set of the basis functions for the
homogeneous solution found earlier is
\[ \{1, {\mathrm e}^{-x}\} \]
Since \(1\) is duplicated in the UC_set, then this basis is
multiplied by extra \(x\) . The UC_set becomes
\[ [\{x, x^{2}, x^{3}\}] \]
Since there was duplication between the basis
functions in the UC_set and the basis functions of the homogeneous solution, the trial
solution is a linear combination of all the basis function in the above updated
UC_set.
\[
y_p = A_{3} x^{3}+A_{2} x^{2}+A_{1} x
\]
The unknowns \(\{A_{1}, A_{2}, A_{3}\}\) are found by substituting the above trial solution \(y_p\) into the
ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives
\[
3 x^{2} A_{3}+2 x A_{2}+6 x A_{3}+A_{1}+2 A_{2} = x^{2}+x +1
\]
Solving for the unknowns by comparing coefficients results
in
\[ \left [A_{1} = 2, A_{2} = -{\frac {1}{2}}, A_{3} = {\frac {1}{3}}\right ] \]
Substituting the above back in the above trial solution \(y_p\) , gives the particular
solution
\[
y_p = \frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 \,{\mathrm e}^{-x}+c_2\right ) + \left (\frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x\right ) \\
\end{align*}
Will add steps showing solving for IC
soon.
Figure 107: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.7 Solved as second order ode adjoint method
Time used: 0.533 (sec)
In normal form the ode
\begin{align*} y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \tag {1} \end{align*}
Becomes
\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=r \left (x \right ) \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=1\\ q \left (x \right )&=0\\ r \left (x \right )&=x^{2}+x +1 \end{align*}
The Lagrange adjoint ode is given by
\begin{align*} \xi ^{''}-(\xi \, p)'+\xi q &= 0\\ \xi ^{''}-\left (\xi \left (x \right )\right )' + \left (0\right ) &= 0\\ \xi ^{\prime \prime }\left (x \right )-\xi ^{\prime }\left (x \right )&= 0 \end{align*}
Which is solved for \(\xi (x)\) . This is second order with constant coefficients homogeneous ODE. In
standard form the ODE is
\[ A \xi ''(x) + B \xi '(x) + C \xi (x) = 0 \]
Where in the above \(A=1, B=-1, C=0\) . Let the solution be \(\xi =e^{\lambda x}\) . Substituting this into
the ODE gives
\[ \lambda ^{2} {\mathrm e}^{x \lambda }-\lambda \,{\mathrm e}^{x \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda x}\)
gives
\[ \lambda ^{2}-\lambda = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the
general solution form.Using the quadratic formula
\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=-1, C=0\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {1}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {-1^2 - (4) \left (1\right )\left (0\right )}\\ &= {\frac {1}{2}} \pm {\frac {1}{2}} \end{align*}
Hence
\begin{align*}
\lambda _1 &= {\frac {1}{2}} + {\frac {1}{2}} \\
\lambda _2 &= {\frac {1}{2}} - {\frac {1}{2}} \\
\end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= 1 \\
\lambda _2 &= 0 \\
\end{align*}
Since roots are real and distinct, then the solution is
\begin{align*}
\xi &= c_1 e^{\lambda _1 x} + c_2 e^{\lambda _2 x} \\
\xi &= c_1 e^{\left (1\right )x} +c_2 e^{\left (0\right )x} \\
\end{align*}
Or
\[
\xi =c_1 \,{\mathrm e}^{x}+c_2
\]
Will
add steps showing solving for IC soon.
The original ode (2) now reduces to first order ode
\begin{align*} \xi \left (x \right ) y^{\prime }-y \xi ^{\prime }\left (x \right )+\xi \left (x \right ) p \left (x \right ) y&=\int \xi \left (x \right ) r \left (x \right )d x\\ y^{\prime }+y \left (p \left (x \right )-\frac {\xi ^{\prime }\left (x \right )}{\xi \left (x \right )}\right )&=\frac {\int \xi \left (x \right ) r \left (x \right )d x}{\xi \left (x \right )}\\ y^{\prime }+y \left (1-\frac {c_1 \,{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2}\right )&=\frac {c_2 x +c_1 \,{\mathrm e}^{x}+\frac {c_2 \,x^{2}}{2}+\frac {c_2 \,x^{3}}{3}+c_1 \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+c_1 \left ({\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right )}{c_1 \,{\mathrm e}^{x}+c_2} \end{align*}
Which is now a first order ode. This is now solved for \(y\) . In canonical form a linear first order
is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=\frac {c_2}{c_1 \,{\mathrm e}^{x}+c_2}\\ p(x) &=-\frac {-6 \,{\mathrm e}^{x} c_1 \,x^{2}-2 c_2 \,x^{3}+6 \,{\mathrm e}^{x} c_1 x -3 c_2 \,x^{2}-12 c_1 \,{\mathrm e}^{x}-6 c_2 x}{6 \left (c_1 \,{\mathrm e}^{x}+c_2 \right )} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \frac {c_2}{c_1 \,{\mathrm e}^{x}+c_2}d x}\\ &= \frac {{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (-\frac {-6 \,{\mathrm e}^{x} c_1 \,x^{2}-2 c_2 \,x^{3}+6 \,{\mathrm e}^{x} c_1 x -3 c_2 \,x^{2}-12 c_1 \,{\mathrm e}^{x}-6 c_2 x}{6 \left (c_1 \,{\mathrm e}^{x}+c_2 \right )}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (\frac {y \,{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2}\right ) &= \left (\frac {{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2}\right ) \left (-\frac {-6 \,{\mathrm e}^{x} c_1 \,x^{2}-2 c_2 \,x^{3}+6 \,{\mathrm e}^{x} c_1 x -3 c_2 \,x^{2}-12 c_1 \,{\mathrm e}^{x}-6 c_2 x}{6 \left (c_1 \,{\mathrm e}^{x}+c_2 \right )}\right ) \\
\mathrm {d} \left (\frac {y \,{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2}\right ) &= \left (-\frac {\left (-6 \,{\mathrm e}^{x} c_1 \,x^{2}-2 c_2 \,x^{3}+6 \,{\mathrm e}^{x} c_1 x -3 c_2 \,x^{2}-12 c_1 \,{\mathrm e}^{x}-6 c_2 x \right ) {\mathrm e}^{x}}{6 \left (c_1 \,{\mathrm e}^{x}+c_2 \right )^{2}}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} \frac {y \,{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2}&= \int {-\frac {\left (-6 \,{\mathrm e}^{x} c_1 \,x^{2}-2 c_2 \,x^{3}+6 \,{\mathrm e}^{x} c_1 x -3 c_2 \,x^{2}-12 c_1 \,{\mathrm e}^{x}-6 c_2 x \right ) {\mathrm e}^{x}}{6 \left (c_1 \,{\mathrm e}^{x}+c_2 \right )^{2}} \,dx} \\ &=\frac {-2 \,{\mathrm e}^{x}+\frac {x^{3} {\mathrm e}^{x}}{3}+2 \,{\mathrm e}^{x} x -\frac {{\mathrm e}^{x} x^{2}}{2}}{c_1 \,{\mathrm e}^{x}+c_2} + c_3 \end{align*}
Dividing throughout by the integrating factor \(\frac {{\mathrm e}^{x}}{c_1 \,{\mathrm e}^{x}+c_2}\) gives the final solution
\[ y = \frac {x^{3}}{3}+c_1 c_3 -\frac {x^{2}}{2}+2 x +c_2 c_3 \,{\mathrm e}^{-x}-2 \]
Hence, the solution
found using Lagrange adjoint equation method is
\begin{align*}
y &= \frac {x^{3}}{3}+c_1 c_3 -\frac {x^{2}}{2}+2 x +c_2 c_3 \,{\mathrm e}^{-x}-2 \\
\end{align*}
Will add steps showing solving for IC
soon.
Figure 108: Slope field plot
\(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
1.34.8 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+y^{\prime }=x^{2}+x +1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}+r =0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & r \left (r +1\right )=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (-1, 0\right ) \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (x \right )={\mathrm e}^{-x} \\ \bullet & {} & \textrm {2nd solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (x \right )=1 \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=\mathit {C1} y_{1}\left (x \right )+\mathit {C2} y_{2}\left (x \right )+y_{p}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y=\mathit {C1} \,{\mathrm e}^{-x}+\mathit {C2} +y_{p}\left (x \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (x \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} y_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (x \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [y_{p}\left (x \right )=-y_{1}\left (x \right ) \left (\int \frac {y_{2}\left (x \right ) f \left (x \right )}{W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )}d x \right )+y_{2}\left (x \right ) \left (\int \frac {y_{1}\left (x \right ) f \left (x \right )}{W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )}d x \right ), f \left (x \right )=x^{2}+x +1\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )=\left [\begin {array}{cc} {\mathrm e}^{-x} & 1 \\ -{\mathrm e}^{-x} & 0 \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )={\mathrm e}^{-x} \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} y_{p}\left (x \right ) \\ {} & {} & y_{p}\left (x \right )=-{\mathrm e}^{-x} \left (\int \left (x^{2}+x +1\right ) {\mathrm e}^{x}d x \right )+\int \left (x^{2}+x +1\right )d x \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y_{p}\left (x \right )=-2+\frac {1}{3} x^{3}+2 x -\frac {1}{2} x^{2} \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y=\mathit {C1} \,{\mathrm e}^{-x}+\mathit {C2} -2+\frac {x^{3}}{3}+2 x -\frac {x^{2}}{2} \end {array} \]
1.34.9 Maple trace
Methods for second order ODEs:
1.34.10 Maple dsolve solution
Solving time : 0.010
(sec)
Leaf size : 26
dsolve ( diff ( diff ( y ( x ), x ), x )+ diff ( y ( x ), x ) = x^2+x+1,
y(x),singsol=all)
\[
y = 2 x +\frac {x^{3}}{3}-c_1 \,{\mathrm e}^{-x}-\frac {x^{2}}{2}+c_2
\]
1.34.11 Mathematica DSolve solution
Solving time : 0.101
(sec)
Leaf size : 34
DSolve [{ D [ y [ x ],{ x ,2}]+ D [ y [ x ], x ]==1+ x + x ^2,{}},
y[x],x,IncludeSingularSolutions-> True ]
\[
y(x)\to \frac {x^3}{3}-\frac {x^2}{2}+2 x-c_1 e^{-x}+c_2
\]